

Lecture 19

Max-Flow Min-Cut Theorem

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos

Ford-Fulkerson Method: Correctness

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t ,

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G .

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$|f| = \underbrace{\sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)}_{\text{Flow out of source minus flow in to source}}$$

Flow out of source minus flow in to source

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$|f| = \underbrace{\sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)}_{\text{Flow out of source minus flow in to source}} + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

Flow out of source minus flow in to source

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$|f| = \underbrace{\sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)}_{\text{Flow out of source minus flow in to source}} + \underbrace{\sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)}_{0 \text{ due to flow conservation}}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

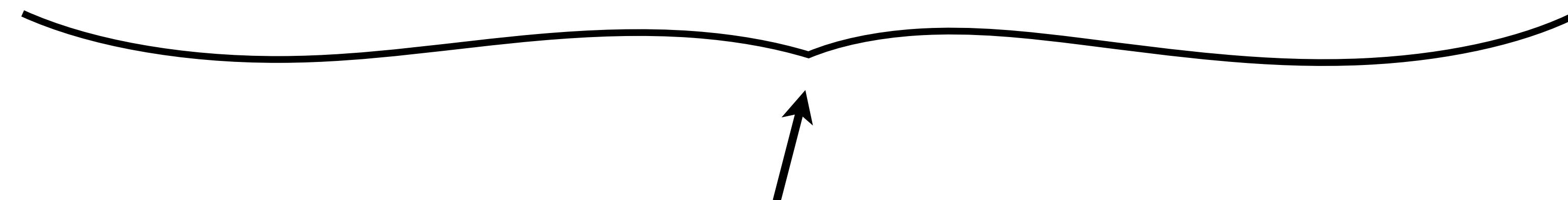
$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

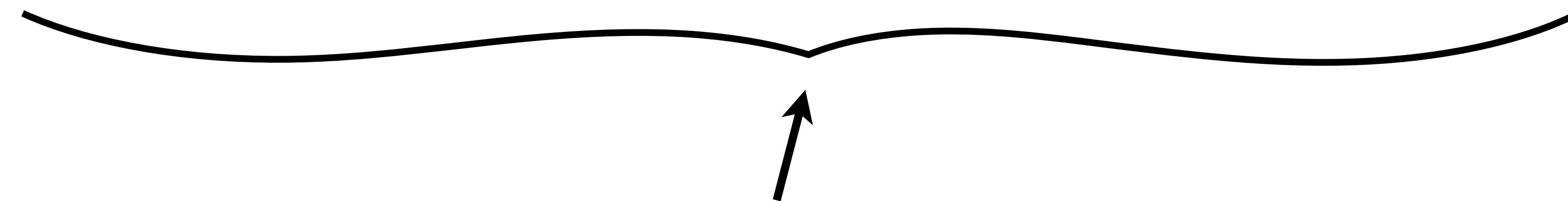


Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$



Sum of “flow out - flow in” for every node in S

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

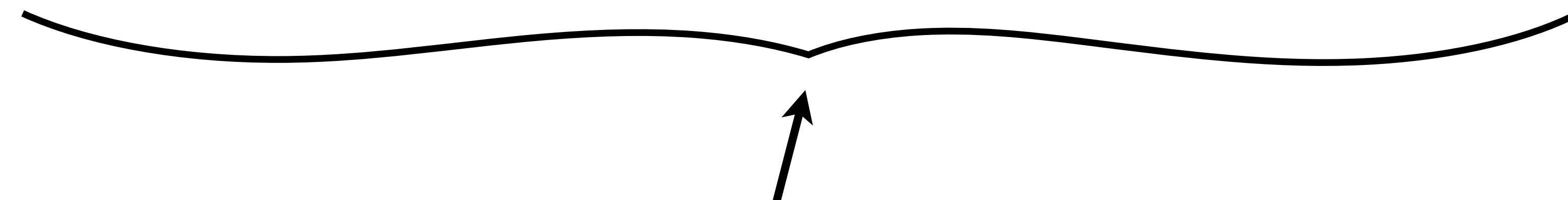
Sum of “flow out - flow in” for every node in S

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$



Sum of "flow out - flow in" for every node in S

$$\sum_{u \in S} \sum_{v \in V} f(u, v) - \sum_{u \in S} \sum_{v \in V} f(v, u)$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned} |f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\ &= \sum_{u \in S} \sum_{v \in V} f(u, v) - \sum_{u \in S} \sum_{v \in V} f(v, u) \end{aligned}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned} |f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\ &= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \end{aligned}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned} |f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\ &= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \end{aligned}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned} |f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\ &= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \\ &= \sum_{v \in S} \sum_{u \in S} f(u, v) + \sum_{v \in T} \sum_{u \in S} f(u, v) \end{aligned}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned} |f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\ &= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \\ &= \sum_{v \in S} \sum_{u \in S} f(u, v) + \sum_{v \in T} \sum_{u \in S} f(u, v) \end{aligned}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned}|f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\&= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \\&= \sum_{v \in S} \sum_{u \in S} f(u, v) + \sum_{v \in T} \sum_{u \in S} f(u, v)\end{aligned}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned} |f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\ &= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \\ &= \sum_{v \in S} \sum_{u \in S} f(u, v) + \sum_{v \in T} \sum_{u \in S} f(u, v) \end{aligned}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned} |f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\ &= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \\ &= \sum_{v \in S} \sum_{u \in S} f(u, v) + \sum_{v \in T} \sum_{u \in S} f(u, v) - \sum_{v \in S} \sum_{u \in S} f(v, u) - \sum_{v \in T} \sum_{u \in S} f(v, u) \end{aligned}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned}|f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\&= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \\&= \sum_{v \in S} \sum_{u \in S} f(u, v) + \sum_{v \in T} \sum_{u \in S} f(u, v) - \sum_{v \in S} \sum_{u \in S} f(v, u) - \sum_{v \in T} \sum_{u \in S} f(v, u)\end{aligned}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned} |f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\ &= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \\ &= \cancel{\sum_{v \in S} \sum_{u \in S} f(u, v)} + \sum_{v \in T} \sum_{u \in S} f(u, v) - \cancel{\sum_{v \in S} \sum_{u \in S} f(v, u)} - \sum_{v \in T} \sum_{u \in S} f(v, u) \end{aligned}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned}|f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\&= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \\&= \cancel{\sum_{v \in S} \sum_{u \in S} f(u, v)} + \sum_{v \in T} \sum_{u \in S} f(u, v) - \cancel{\sum_{v \in S} \sum_{u \in S} f(v, u)} - \sum_{v \in T} \sum_{u \in S} f(v, u) \\&= f(S, T)\end{aligned}$$

Ford-Fulkerson Method: Correctness

Lemma: Let f be a flow in a flow network G with source s and sink t , and let (S, T) be any cut of G . Then, the net flow across (S, T) is $f(S, T) = |f|$.

Proof:

$$\begin{aligned}|f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\&= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \\&= \cancel{\sum_{v \in S} \sum_{u \in S} f(u, v)} + \sum_{v \in T} \sum_{u \in S} f(u, v) - \cancel{\sum_{v \in S} \sum_{u \in S} f(v, u)} - \sum_{v \in T} \sum_{u \in S} f(v, u) \\&= f(S, T)\end{aligned}$$

■

Ford-Fulkerson Method: Correctness

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Examples:

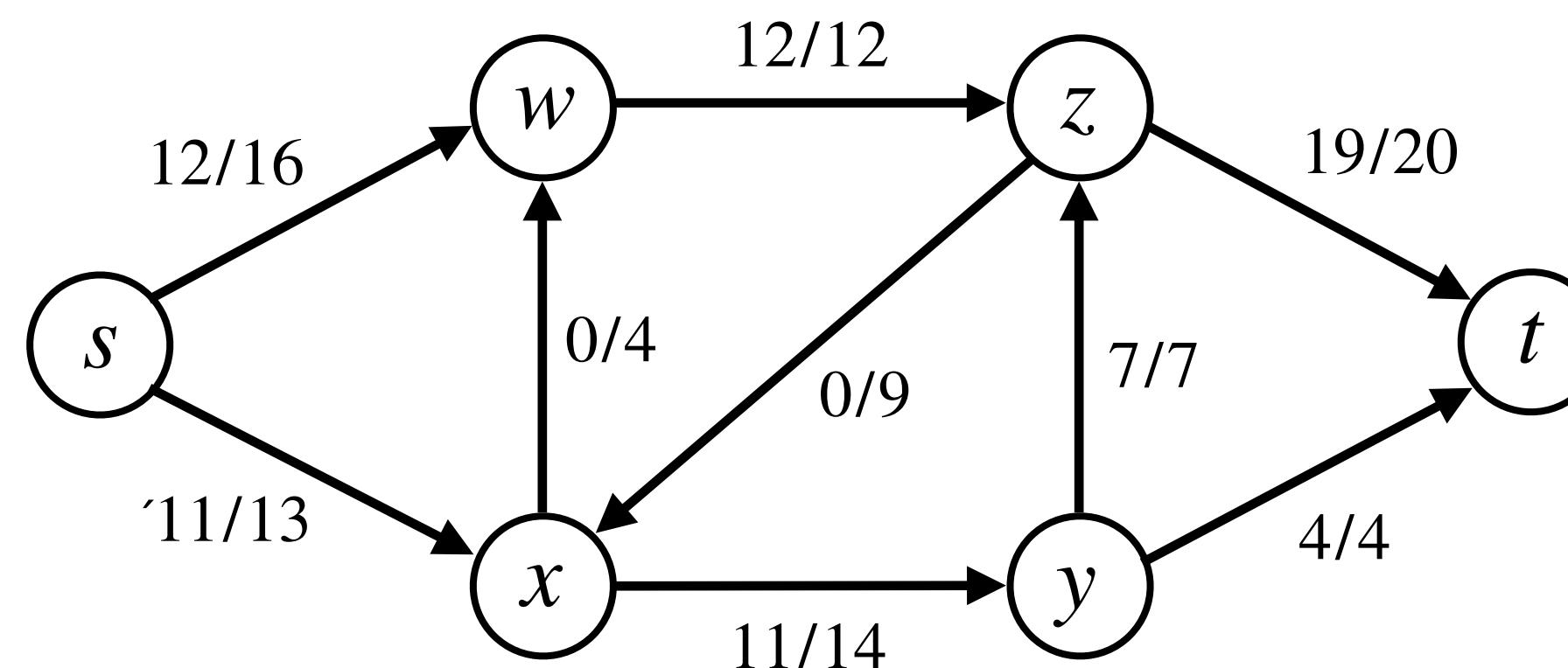
Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Examples:



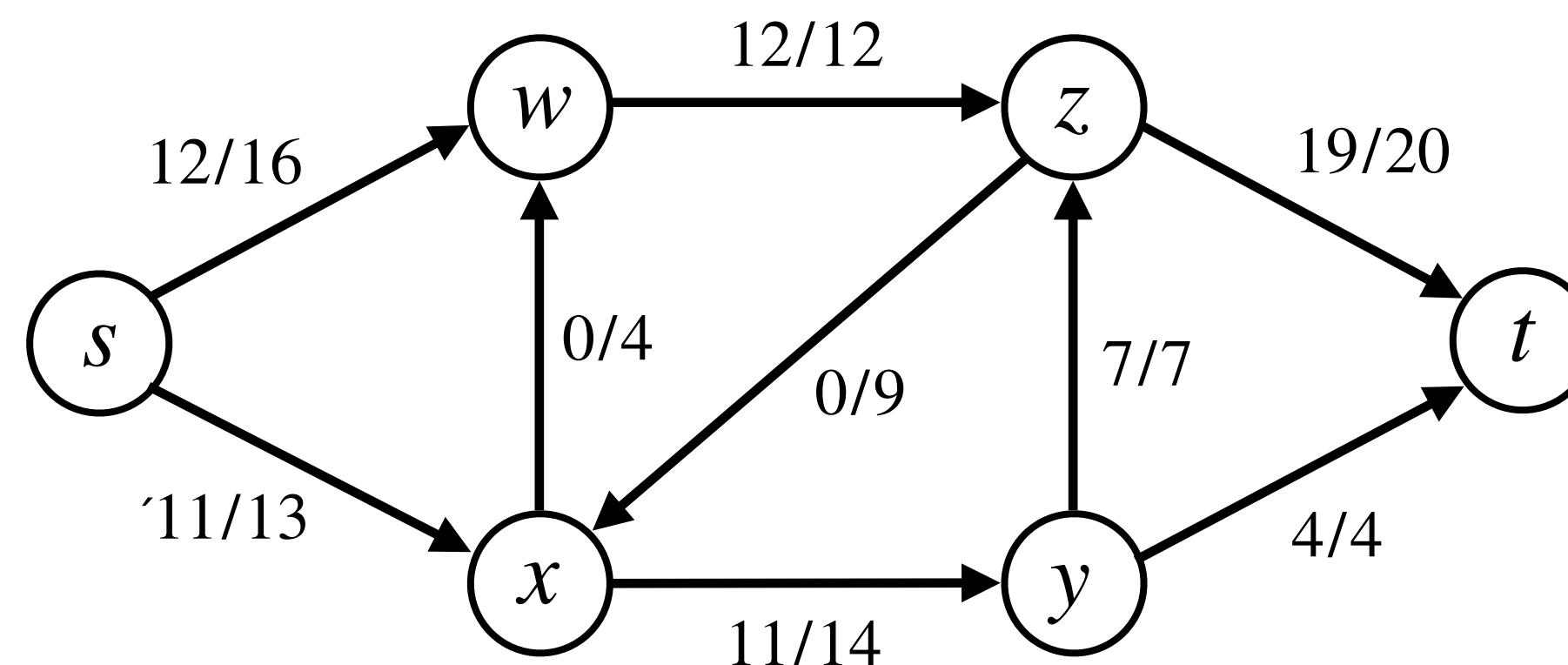
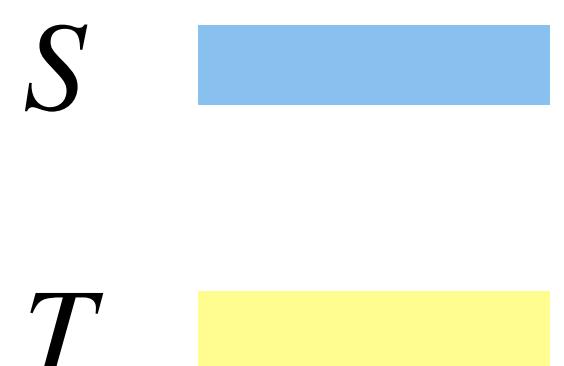
Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Examples:



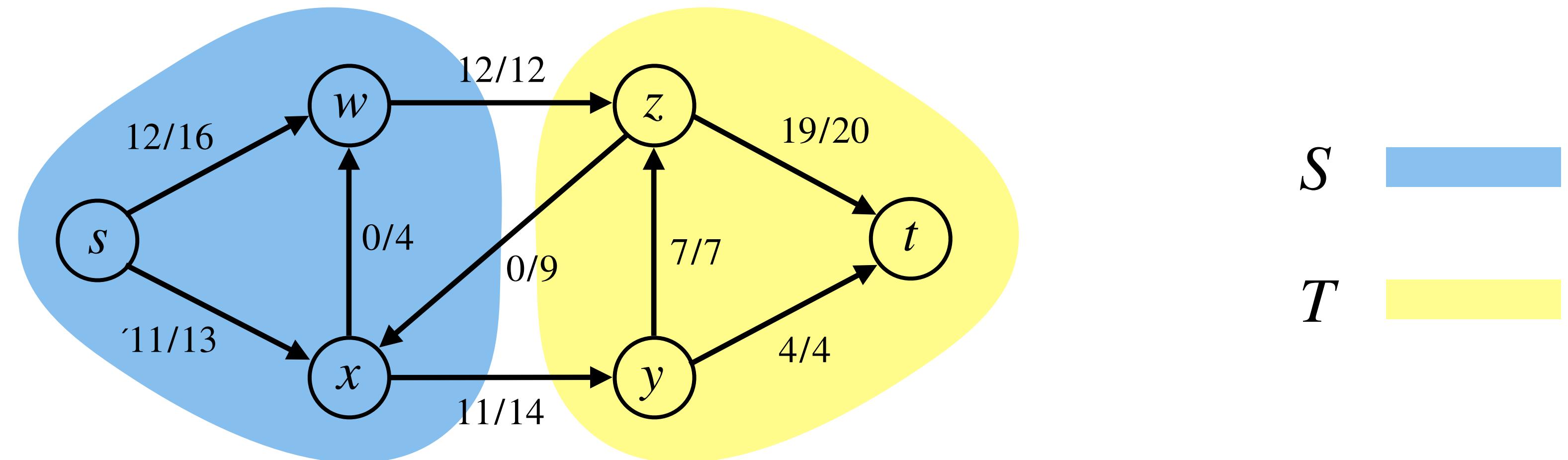
Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Examples:



Ford-Fulkerson Method: Correctness

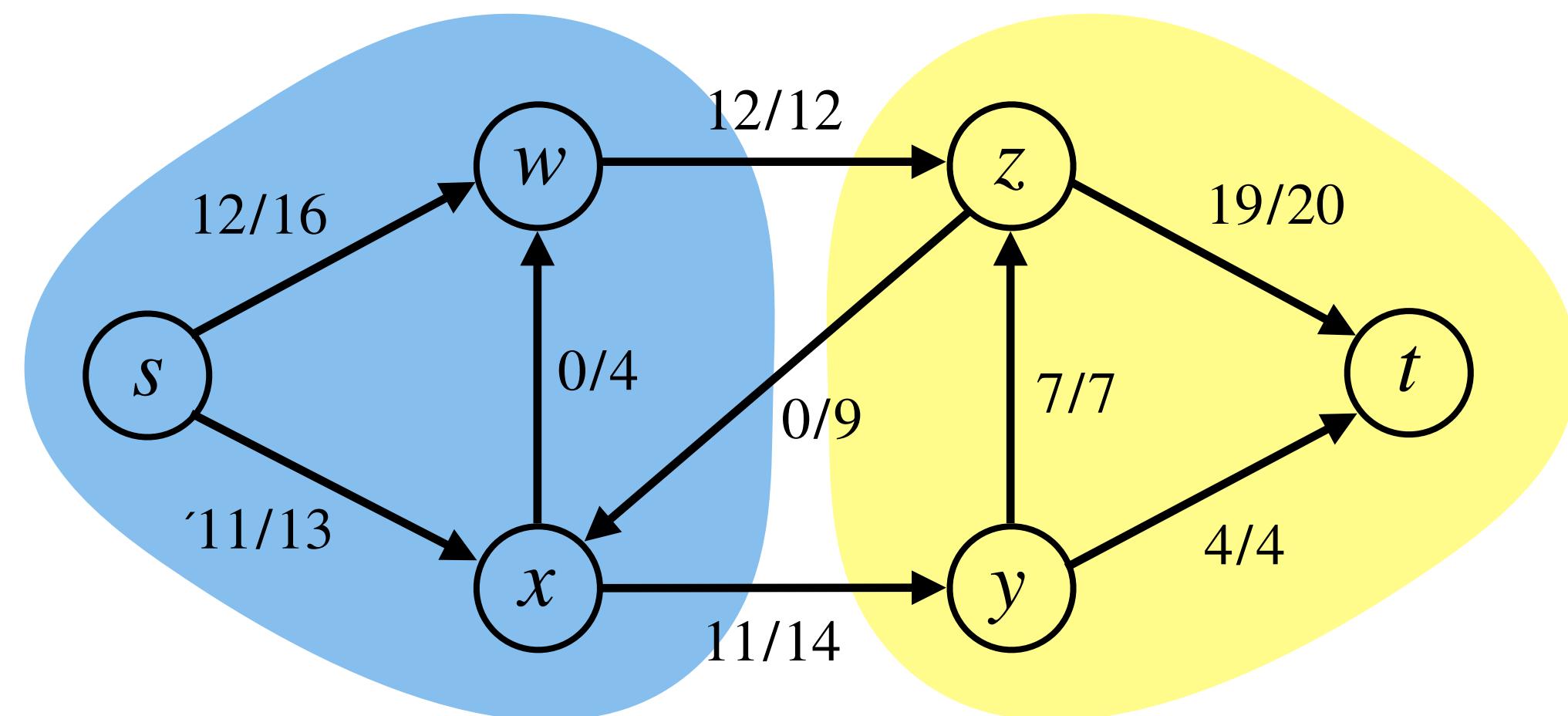
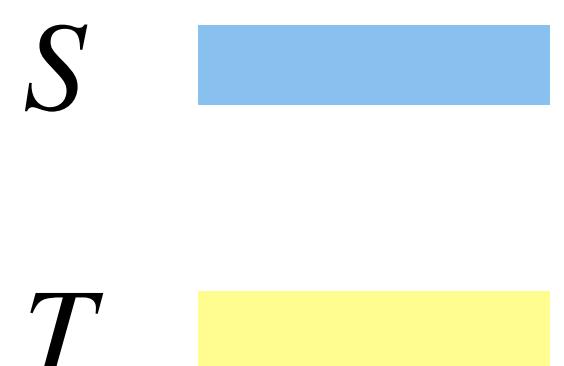
Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Examples:

$$c(S, T) = 26$$



Ford-Fulkerson Method: Correctness

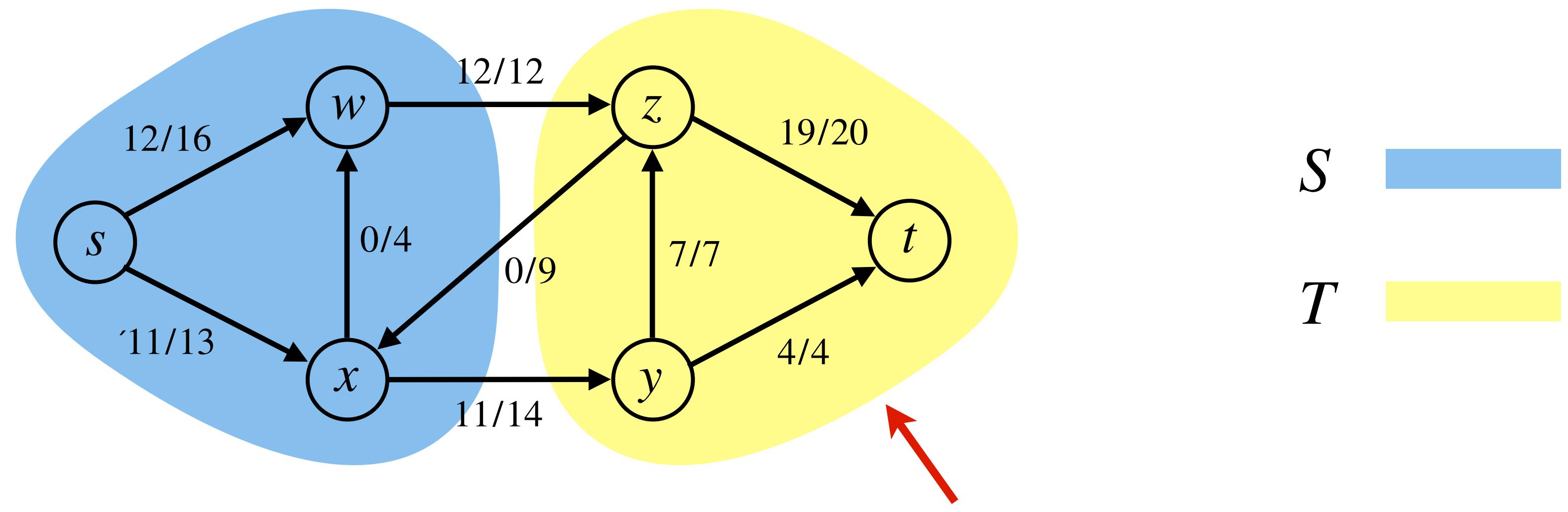
Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Examples:

$$c(S, T) = 26$$



Is a flow of value 27 possible?

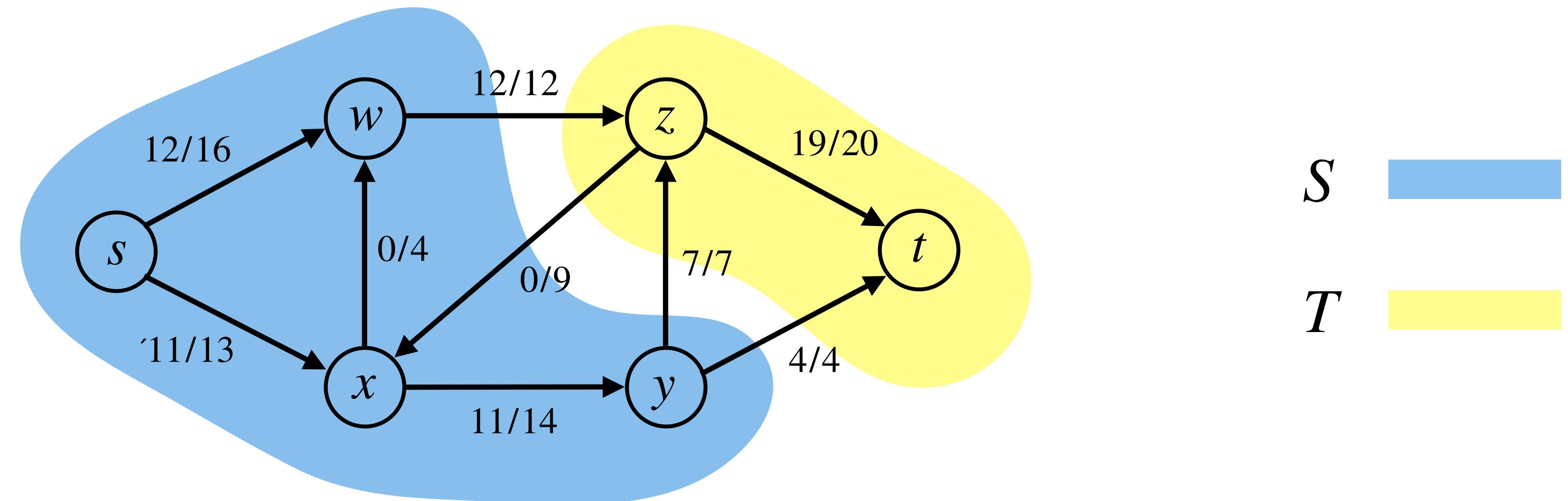
Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Examples:



Ford-Fulkerson Method: Correctness

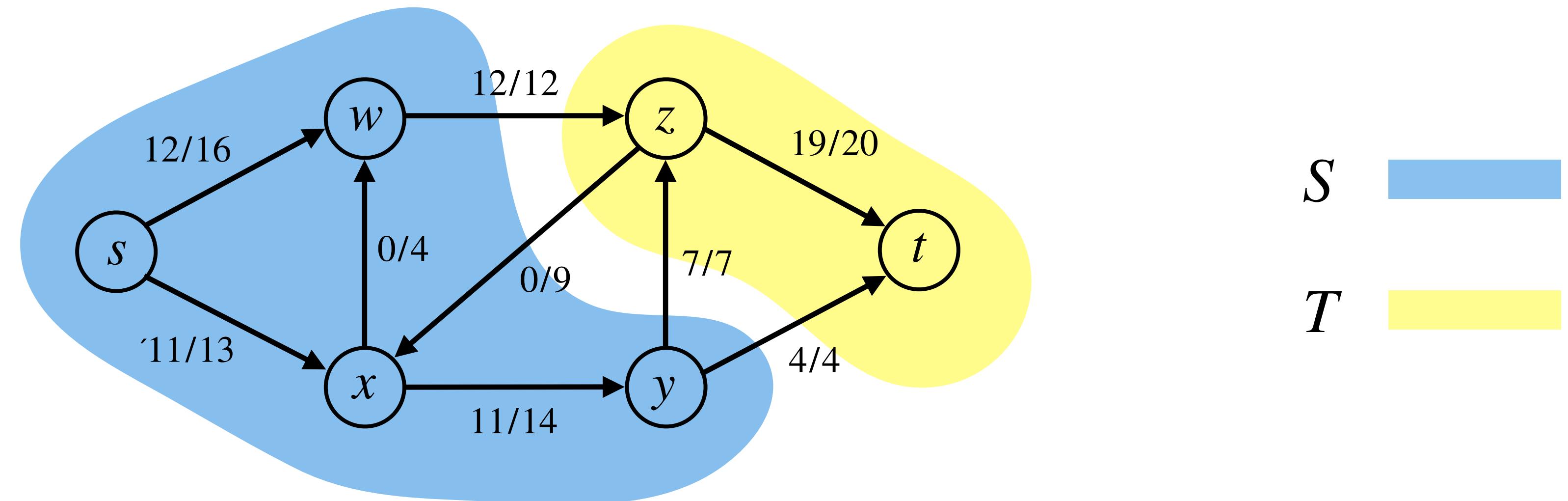
Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Examples:

$$c(S, T) = 23$$



Ford-Fulkerson Method: Correctness

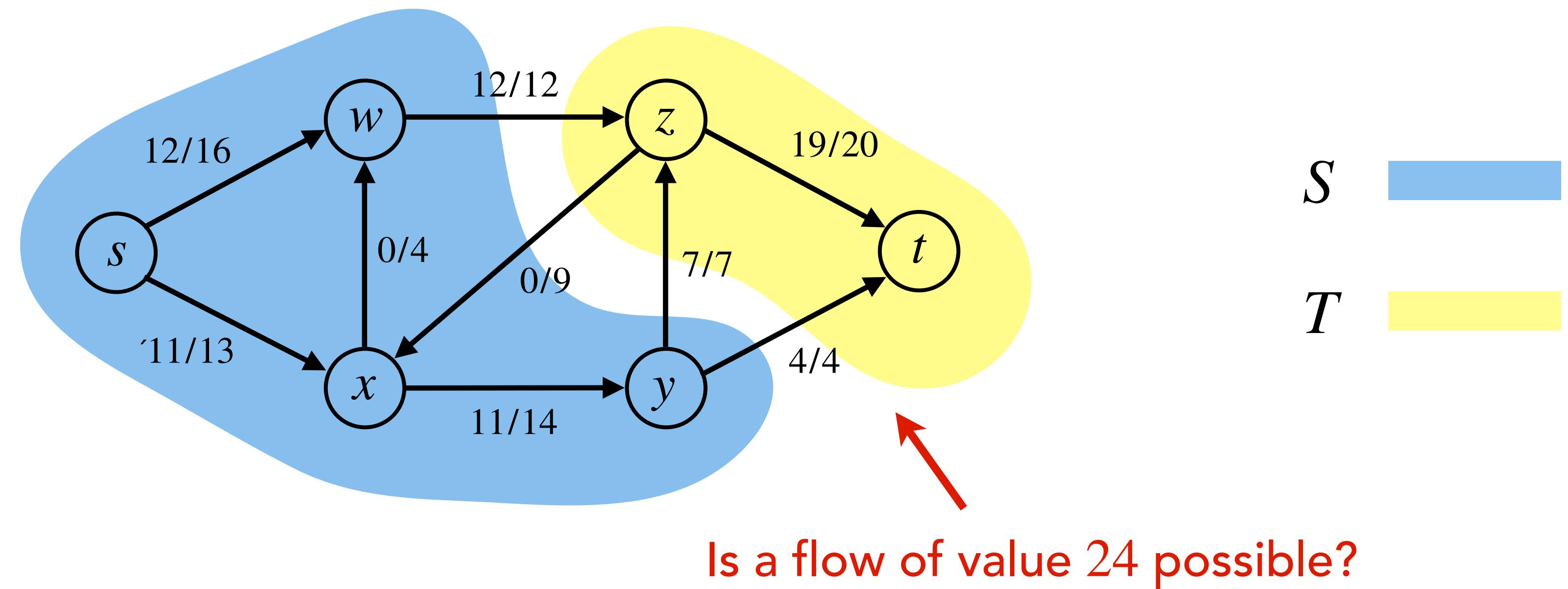
Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Examples:

$$c(S, T) = 23$$



Ford-Fulkerson Method: Correctness

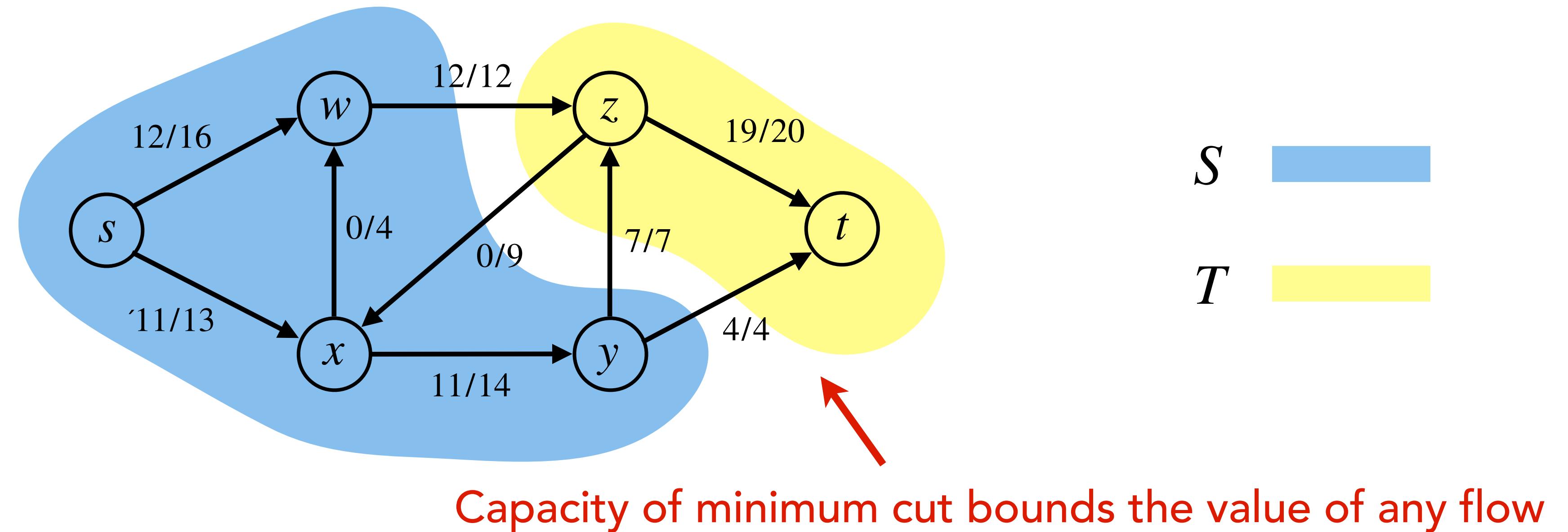
Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Examples:

$$c(S, T) = 23$$



Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network $G \leq$ **capacity** of any **cut** of G .

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network $G \leq$ **capacity** of any **cut** of G .

Proof:

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network G \leq **capacity** of any **cut** of G .

Proof: Let (S, T) be any cut and f be any flow of G .

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network G \leq **capacity** of any **cut** of G .

Proof: Let (S, T) be any cut and f be any flow of G .

Then,

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network G \leq **capacity** of any **cut** of G .

Proof: Let (S, T) be any cut and f be any flow of G .

Then,

$$|f| = f(S, T)$$

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network G \leq **capacity** of any **cut** of G .

Proof: Let (S, T) be any cut and f be any flow of G .

Then,

$$|f| = f(S, T)$$

We just proved this

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network G \leq **capacity** of any **cut** of G .

Proof: Let (S, T) be any cut and f be any flow of G .

Then,

$$|f| = f(S, T)$$

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network $G \leq$ **capacity** of any **cut** of G .

Proof: Let (S, T) be any cut and f be any flow of G .

Then,

$$|f| = f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network G \leq **capacity** of any **cut** of G .

Proof: Let (S, T) be any cut and f be any flow of G .

Then,

$$|f| = f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \leq \sum_{u \in S} \sum_{v \in T} f(u, v)$$

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network G \leq **capacity** of any **cut** of G .

Proof: Let (S, T) be any cut and f be any flow of G .

Then,

$$|f| = f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \leq \sum_{u \in S} \sum_{v \in T} f(u, v) \leq \sum_{u \in S} \sum_{v \in T} c(u, v)$$

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network G \leq **capacity** of any **cut** of G .

Proof: Let (S, T) be any cut and f be any flow of G .

Then,

$$|f| = f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \leq \sum_{u \in S} \sum_{v \in T} f(u, v) \leq \sum_{u \in S} \sum_{v \in T} c(u, v) = c(S, T)$$

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network G \leq **capacity** of any **cut** of G .

Proof: Let (S, T) be any cut and f be any flow of G .

Then,

$$|f| = f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \leq \sum_{u \in S} \sum_{v \in T} f(u, v) \leq \sum_{u \in S} \sum_{v \in T} c(u, v) = c(S, T)$$

■

Ford-Fulkerson Method: Correctness

Defn: The **capacity** of a cut (S, T) is defined as

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$

A **minimum cut** is a cut whose capacity is **minimum** over all cuts of the network.

Lemma: The **value** of any flow f in a flow network G \leq **capacity** of any **cut** of G .

Proof: Let (S, T) be any cut and f be any flow of G .

Then,

$$|f| = f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \leq \sum_{u \in S} \sum_{v \in T} f(u, v) \leq \sum_{u \in S} \sum_{v \in T} c(u, v) = c(S, T)$$

■

Corollary: The **value** of **max flow** in a flow network G \leq **capacity** of **minimum cut** of G .

Ford-Fulkerson Method: Correctness

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t ,

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: We will prove in the following way:

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: We will prove in the following way:

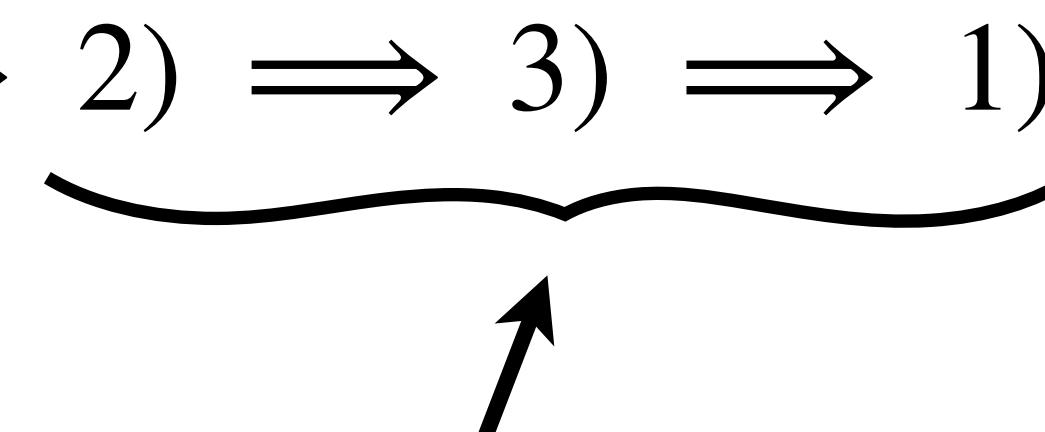
$$1) \implies 2) \implies 3) \implies 1)$$

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: We will prove in the following way:

$$1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 1)$$


This is enough to prove Ford-Fulkerson method correct

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Corollary: The **value** of max flow in a flow network G = **capacity** of **minimum cut** of G .

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Corollary: The **value** of max flow in a flow network G = **capacity** of **minimum cut** of G .

Proof: Let f be a maximum flow in G and (S, T) be a minimum cut.

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Corollary: The **value** of max flow in a flow network G = **capacity** of **minimum cut** of G .

Proof: Let f be a maximum flow in G and (S, T) be a minimum cut.

Suppose $|f| \neq c(S, T)$.

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Corollary: The **value** of max flow in a flow network G = **capacity** of **minimum cut** of G .

Proof: Let f be a maximum flow in G and (S, T) be a minimum cut.

Suppose $|f| \neq c(S, T)$. Let (S', T') be a non-minimum cut such that $|f| = c(S', T')$.

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Corollary: The **value** of max flow in a flow network G = **capacity** of **minimum cut** of G .

Proof: Let f be a maximum flow in G and (S, T) be a minimum cut.

Suppose $|f| \neq c(S, T)$. Let (S', T') be a non-minimum cut such that $|f| = c(S', T')$.

Such a cut must exist due to above theorem.

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Corollary: The **value** of max flow in a flow network G = **capacity** of **minimum cut** of G .

Proof: Let f be a maximum flow in G and (S, T) be a minimum cut.

Suppose $|f| \neq c(S, T)$. Let (S', T') be a non-minimum cut such that $|f| = c(S', T')$.

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Corollary: The **value** of max flow in a flow network G = **capacity** of **minimum cut** of G .

Proof: Let f be a maximum flow in G and (S, T) be a minimum cut.

Suppose $|f| \neq c(S, T)$. Let (S', T') be a non-minimum cut such that $|f| = c(S', T')$.

But this implies $|f| > c(S, T)$, which is a contradiction.

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Corollary: The **value** of max flow in a flow network G = **capacity** of **minimum cut** of G .

Proof: Let f be a maximum flow in G and (S, T) be a minimum cut.

Suppose $|f| \neq c(S, T)$. Let (S', T') be a non-minimum cut such that $|f| = c(S', T')$.

But this implies $|f| > c(S, T)$, which is a contradiction.

Value of any flow \leq Capacity of any cut

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Corollary: The **value** of max flow in a flow network G = **capacity** of **minimum cut** of G .

Proof: Let f be a maximum flow in G and (S, T) be a minimum cut.

Suppose $|f| \neq c(S, T)$. Let (S', T') be a non-minimum cut such that $|f| = c(S', T')$.

But this implies $|f| > c(S, T)$, which is a contradiction.

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Corollary: The **value** of max flow in a flow network G = **capacity** of **minimum cut** of G .

Proof: Let f be a maximum flow in G and (S, T) be a minimum cut.

Suppose $|f| \neq c(S, T)$. Let (S', T') be a non-minimum cut such that $|f| = c(S', T')$.

But this implies $|f| > c(S, T)$, which is a contradiction. Hence $|f| = c(S, T)$.

Ford-Fulkerson Method: Correctness

Max-flow Min-cut Theorem: If f is a flow in a flow network $G = (V, E)$ with source s and sink t , then the following conditions are equivalent:

- 1) f is a **maximum flow** in G .
- 2) The residual network G_f contains **no augmenting path**.
- 3) $|f| = c(S, T)$ for some cut (S, T) of G .

Corollary: The **value** of max flow in a flow network G = **capacity** of **minimum cut** of G .

Proof: Let f be a maximum flow in G and (S, T) be a minimum cut.

Suppose $|f| \neq c(S, T)$. Let (S', T') be a non-minimum cut such that $|f| = c(S', T')$.

But this implies $|f| > c(S, T)$, which is a contradiction. Hence $|f| = c(S, T)$.

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

Lemma: If f is a **maximum flow** in G , then residual network G_f contains **no augmenting path**.

Max-Flow Min-Cut Theorem

Lemma: If f is a **maximum flow** in G , then residual network G_f contains **no augmenting path**.

Proof:

Max-Flow Min-Cut Theorem

Lemma: If f is a **maximum flow** in G , then residual network G_f contains **no augmenting path**.

Proof: Contrapositive of the statement is:

Max-Flow Min-Cut Theorem

Lemma: If f is a **maximum flow** in G , then residual network G_f contains **no augmenting path**.

Proof: Contrapositive of the statement is:

If residual network G_f contains **augmenting path**, then f is not a **maximum flow** in G .

Max-Flow Min-Cut Theorem

Lemma: If f is a **maximum flow** in G , then residual network G_f contains **no augmenting path**.

Proof: Contrapositive of the statement is:

If residual network G_f contains **augmenting path**, then f is not a **maximum flow** in G .

The above statement is true, as f can be **increased** using augmenting path.

Max-Flow Min-Cut Theorem

Lemma: If f is a **maximum flow** in G , then residual network G_f contains **no augmenting path**.

Proof: Contrapositive of the statement is:

If residual network G_f contains **augmenting path**, then f is not a **maximum flow** in G .

The above statement is true, as f can be **increased** using augmenting path. ■

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut

Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof:

Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path.

Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

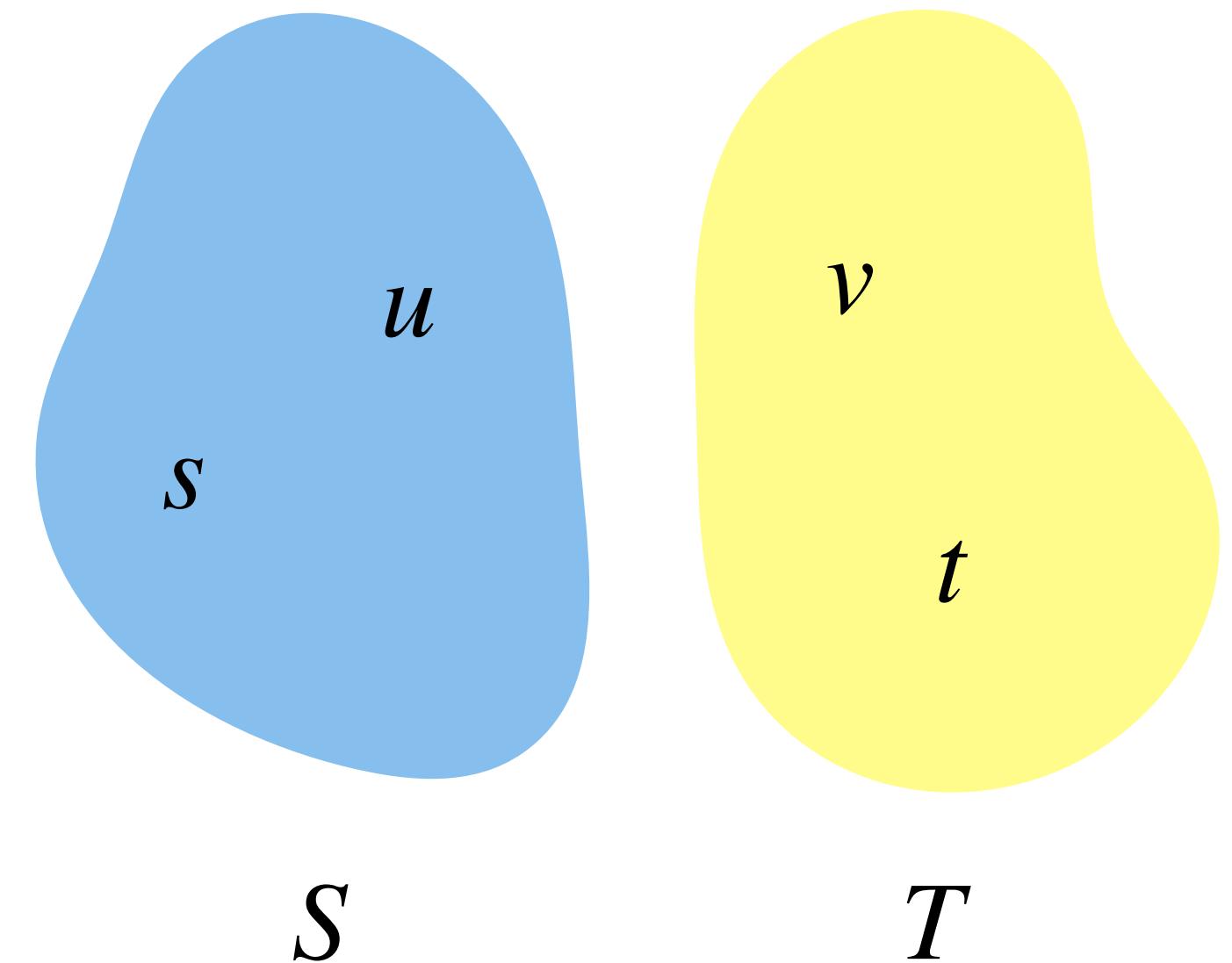
Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$



Max-Flow Min-Cut Theorem

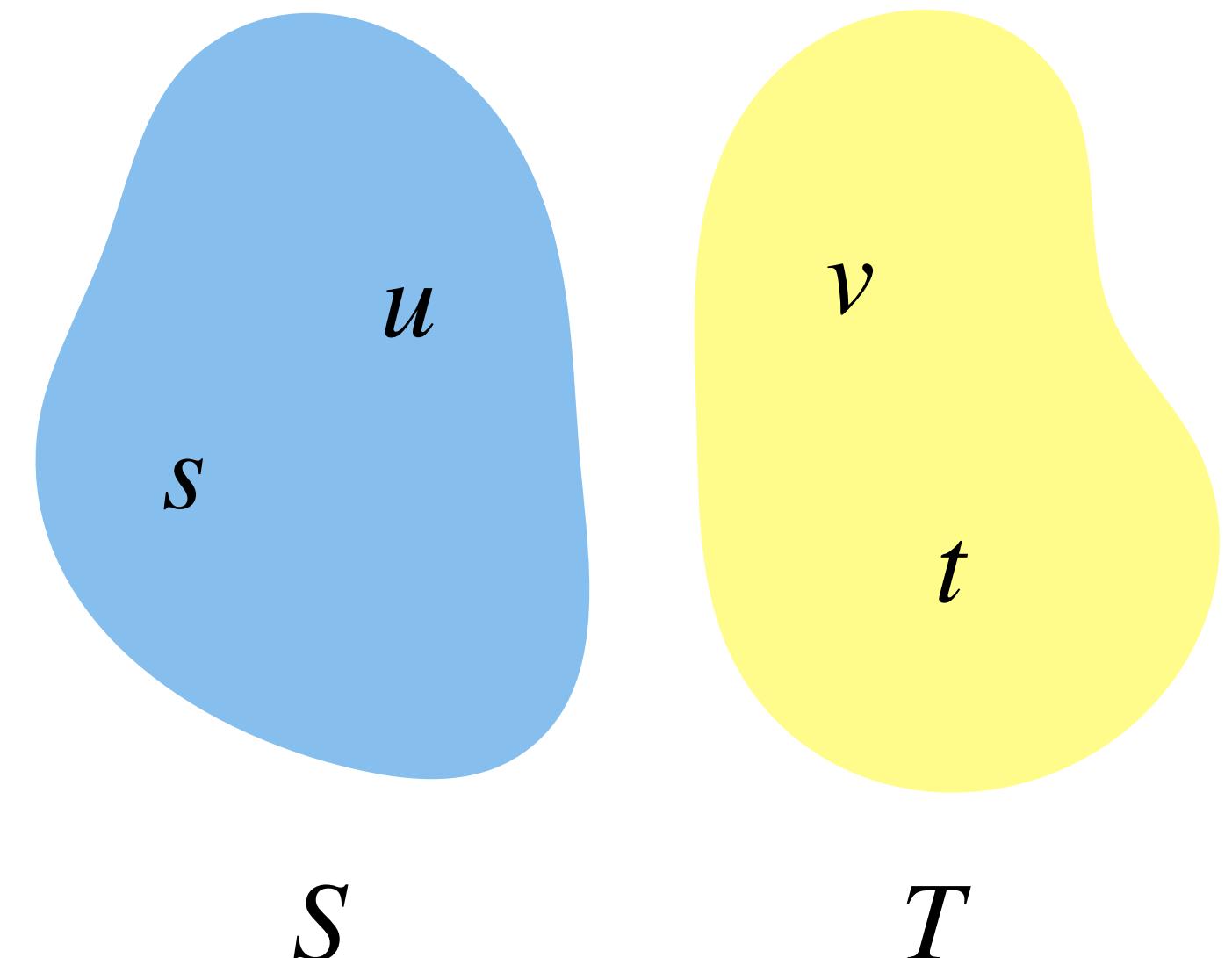
Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Can $f(u, v) < c(u, v)$ for any (u, v) edge in G where $u \in S, v \in T$?



Max-Flow Min-Cut Theorem

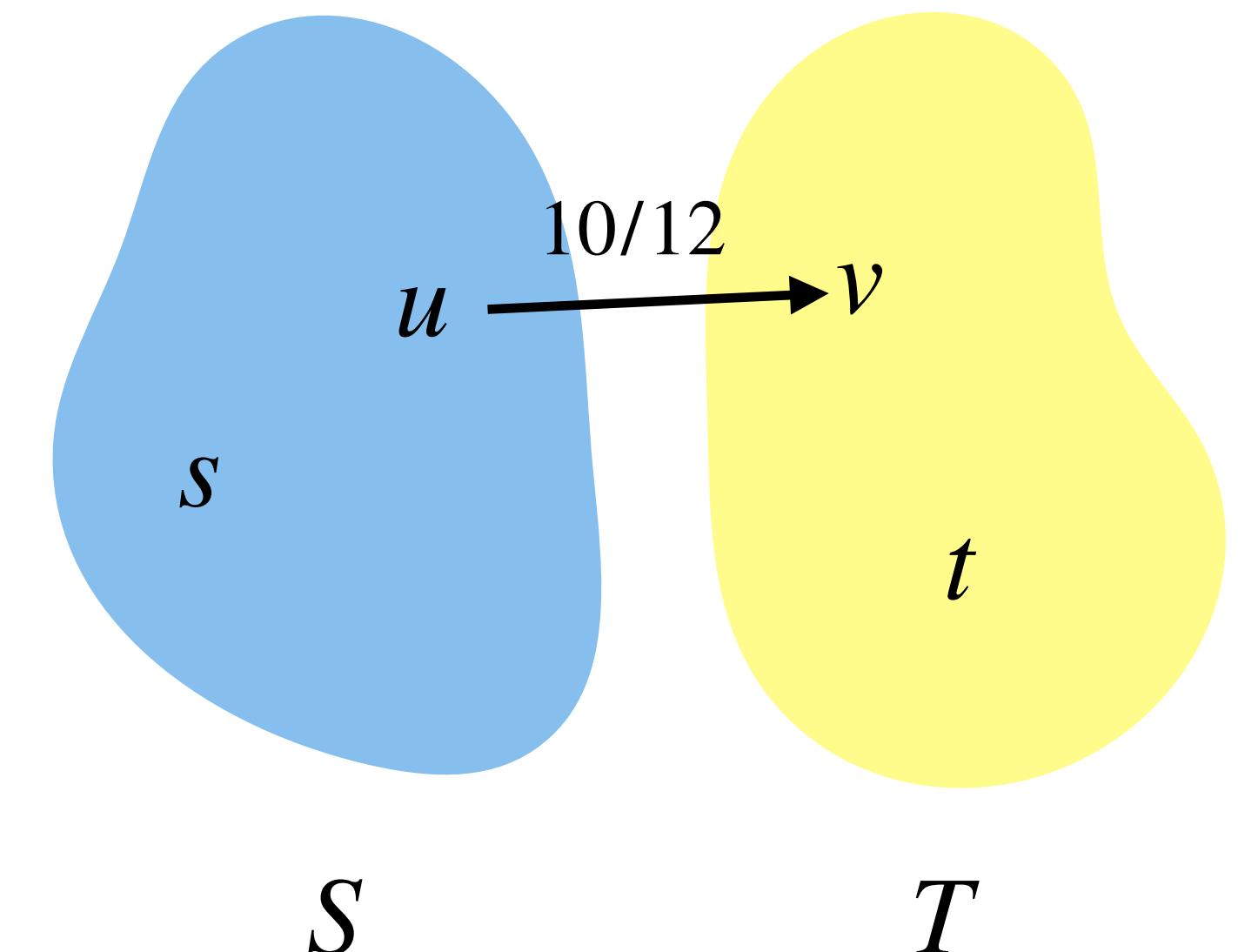
Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Can $f(u, v) < c(u, v)$ for any (u, v) edge in G where $u \in S, v \in T$?



Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

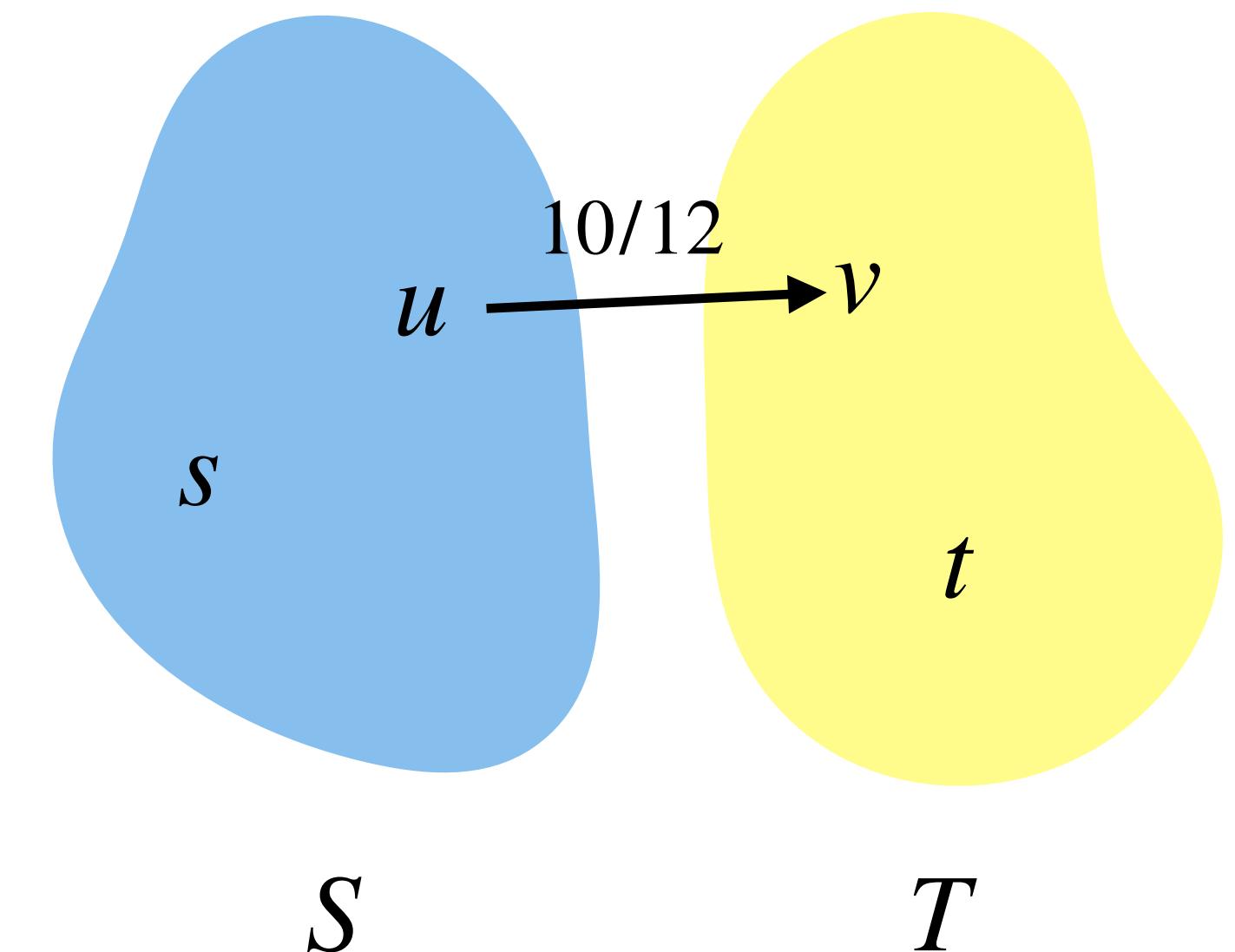
Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Can $f(u, v) < c(u, v)$ for any (u, v) edge in G where $u \in S, v \in T$?

No, otherwise there will be an edge in G_f from u to v with



Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

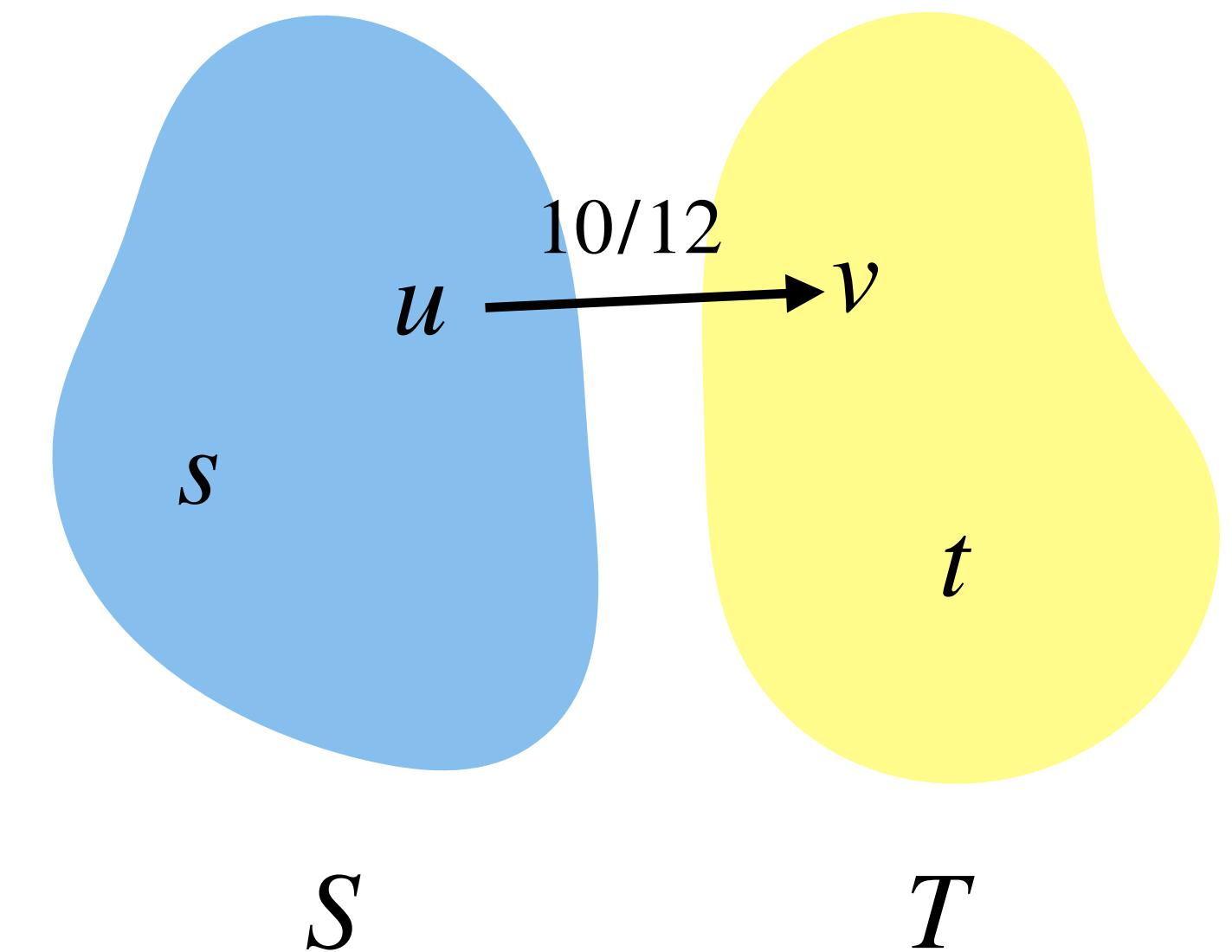
Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

Can $f(u, v) < c(u, v)$ for any (u, v) edge in G where $u \in S, v \in T$?

No, otherwise there will be an edge in G_f from u to v with capacity $c(u, v) - f(u, v)$ and v would be in S .



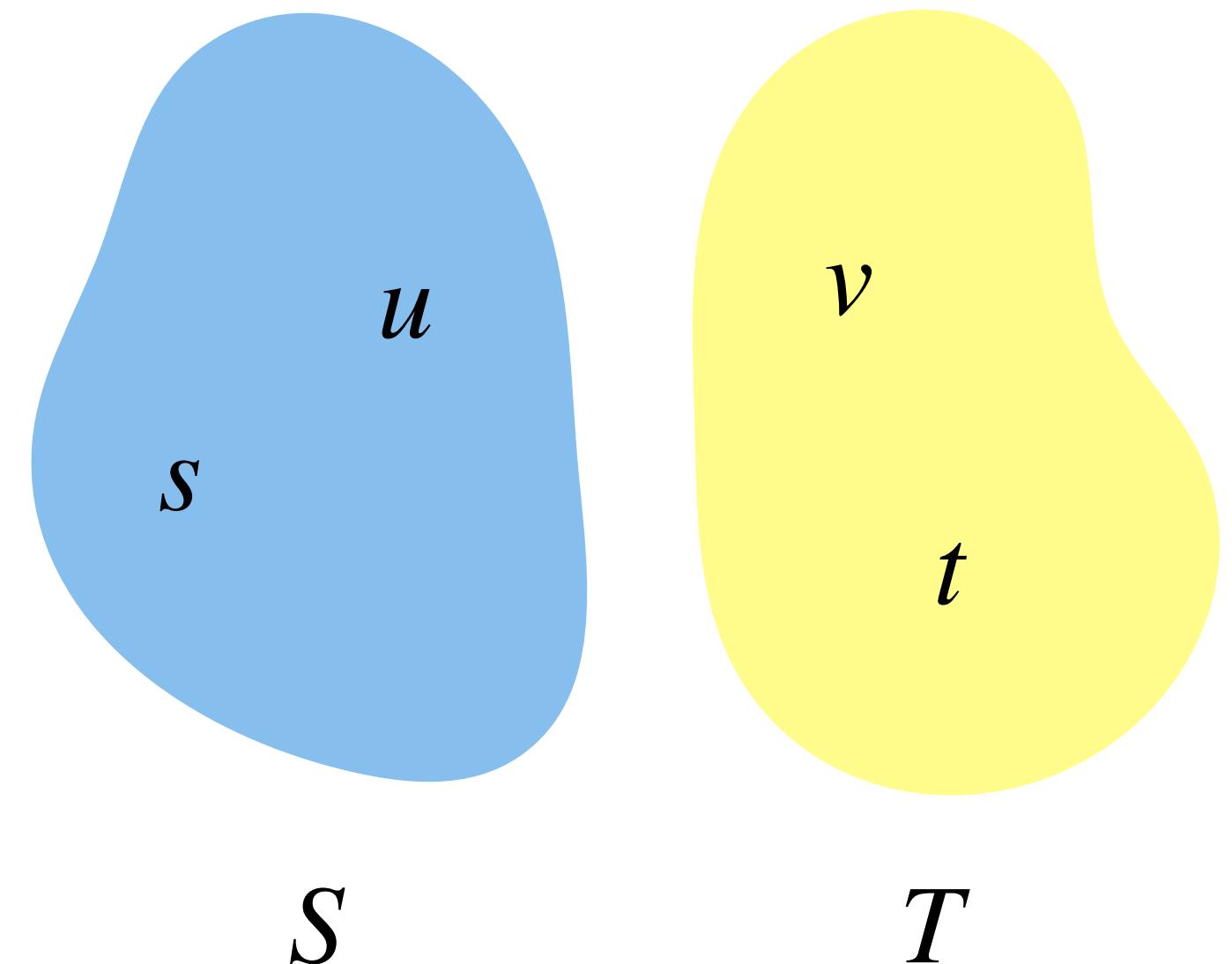
Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$\begin{aligned} f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u, v) \end{aligned}$$



Max-Flow Min-Cut Theorem

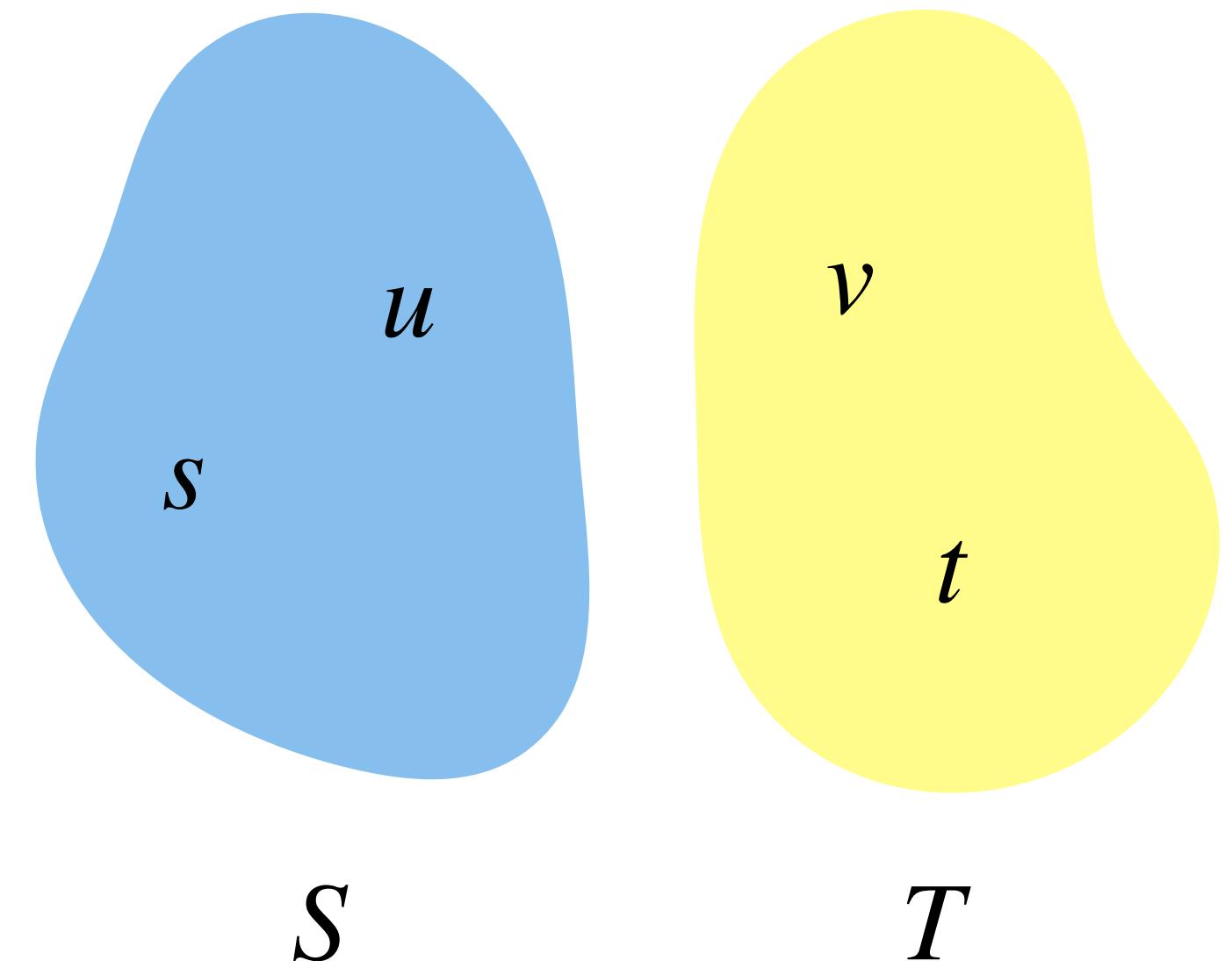
Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$\begin{aligned} f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u, v) \end{aligned}$$

Can $f(v, u) > 0$ for any (v, u) edge in G where $u \in S, v \in T$?



Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

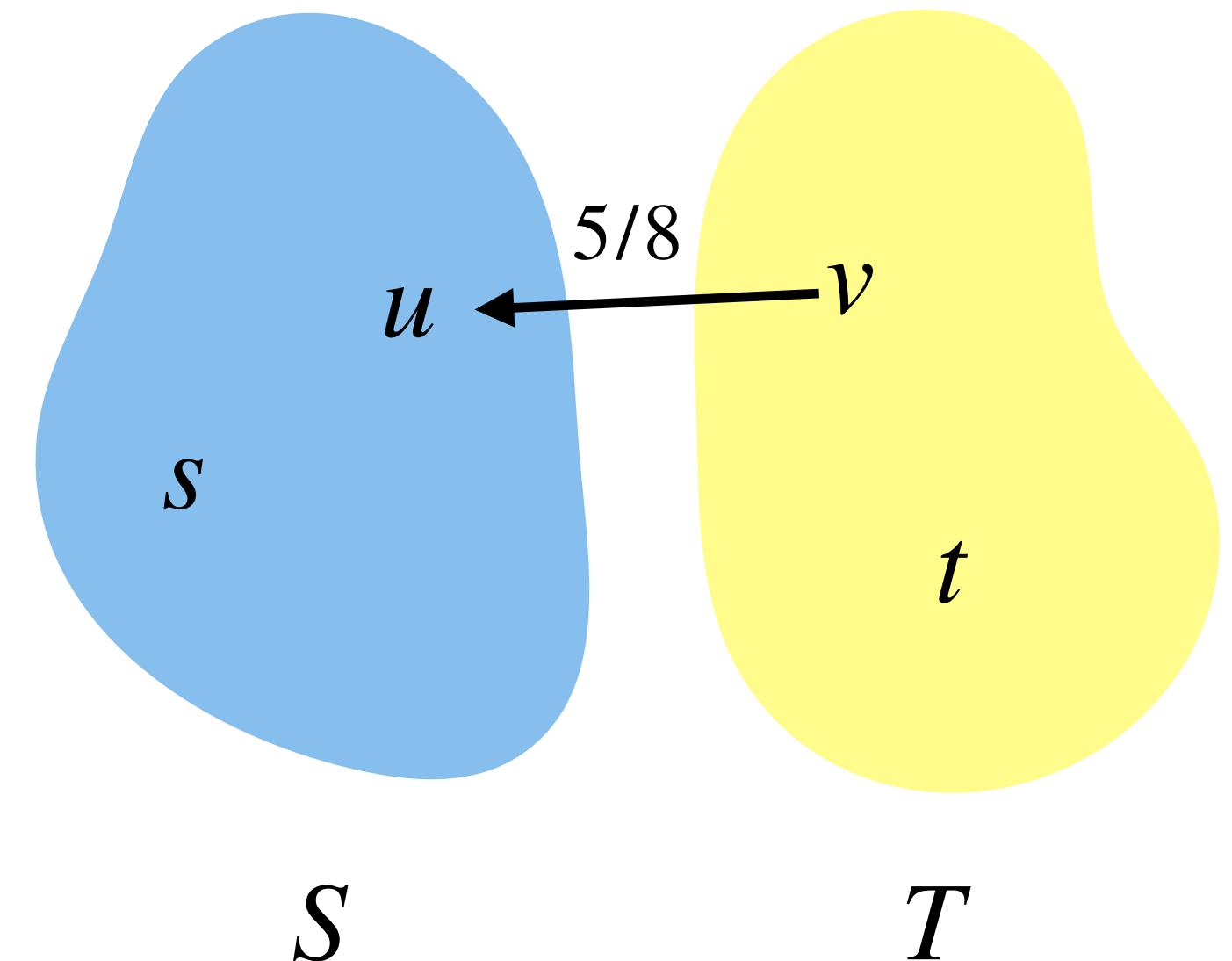
Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$\begin{aligned} f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u, v) \end{aligned}$$

↑

Can $f(v, u) > 0$ for any (v, u) edge in G where $u \in S, v \in T$?



Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

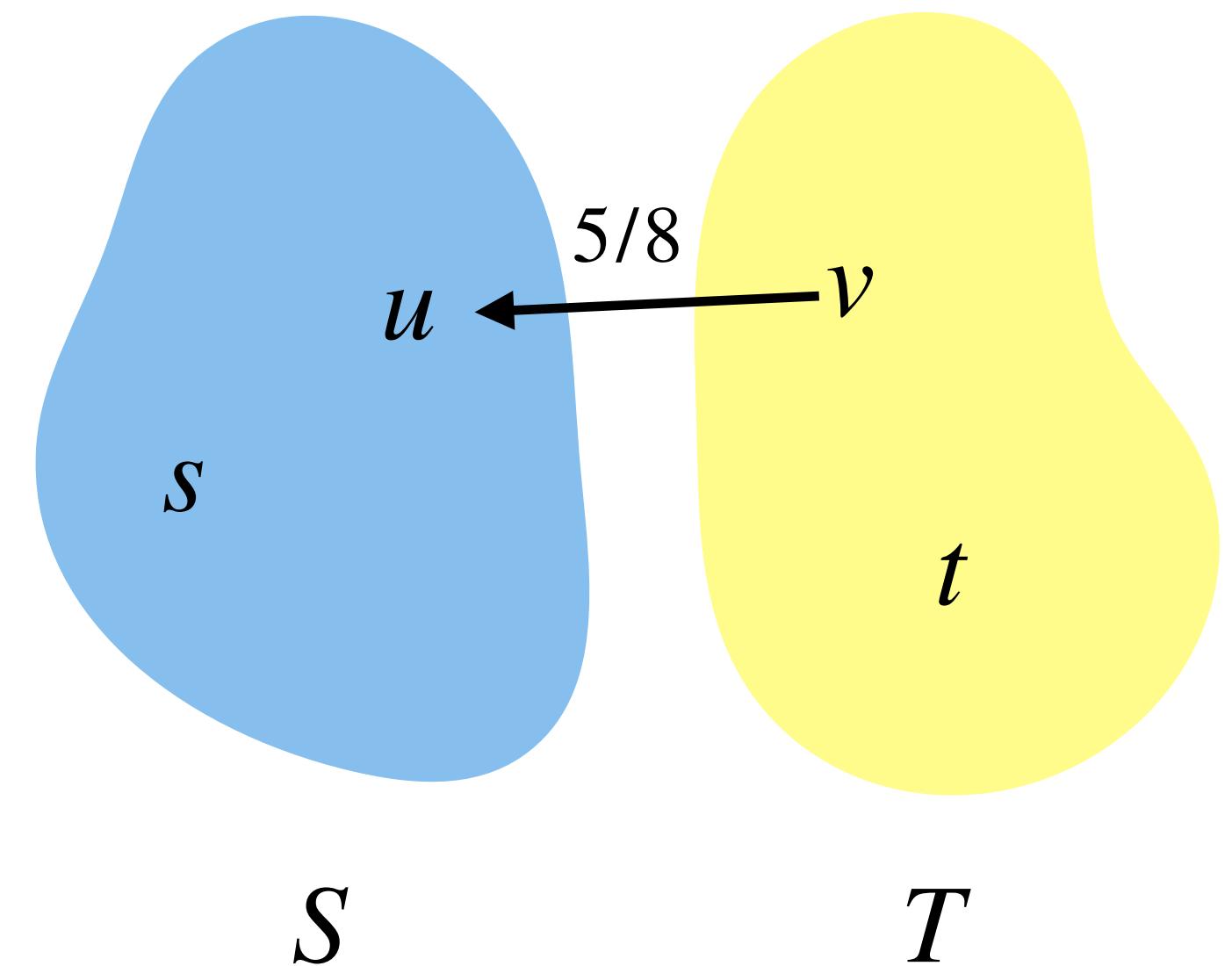
Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$\begin{aligned} f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u, v) \end{aligned}$$

↑

Can $f(v, u) > 0$ for any (v, u) edge in G where $u \in S, v \in T$?

No, otherwise there will be an edge in G_f from u to v with



Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

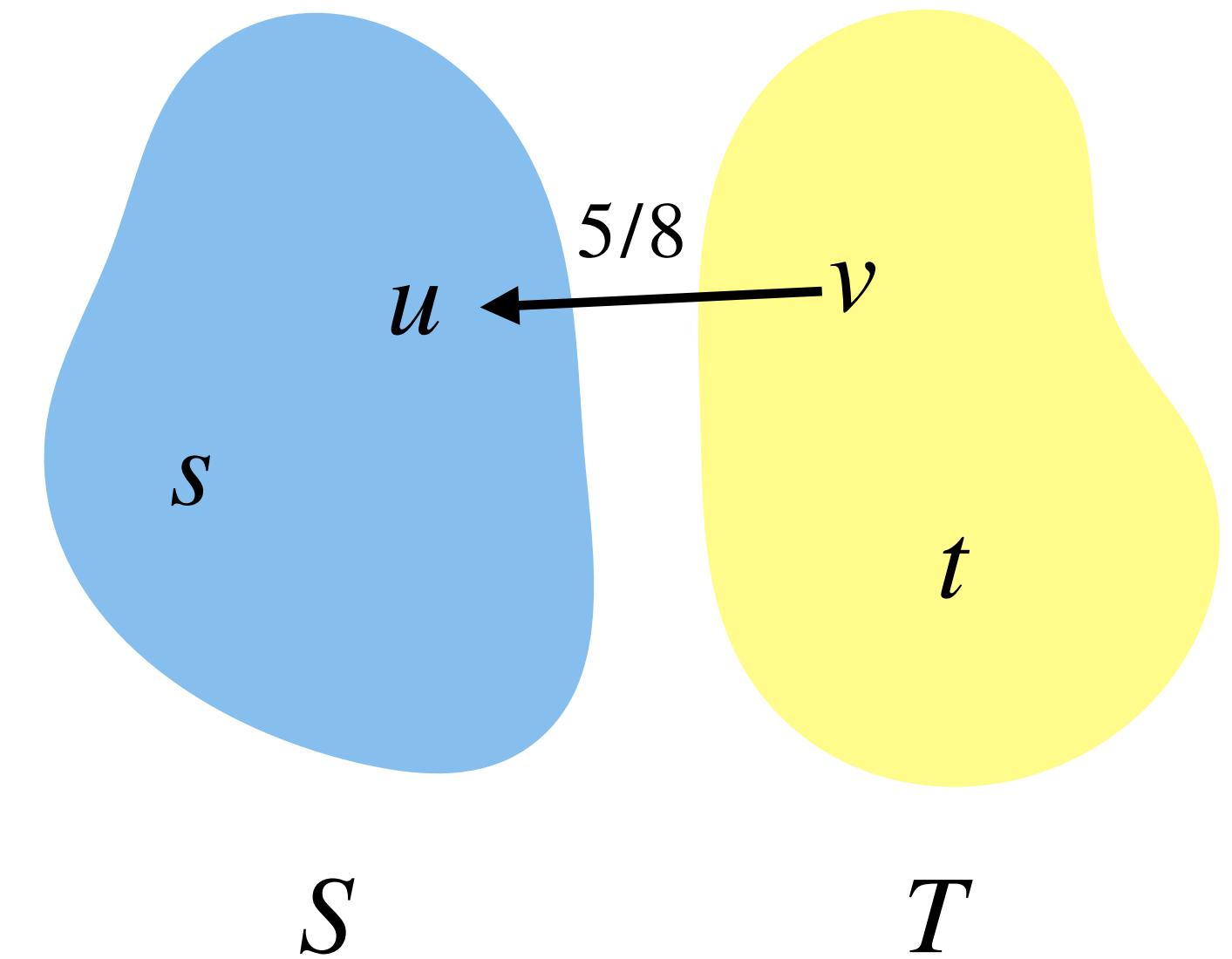
Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$\begin{aligned} f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u, v) \end{aligned}$$

↑

Can $f(v, u) > 0$ for any (v, u) edge in G where $u \in S, v \in T$?

No, otherwise there will be an edge in G_f from u to v with capacity $f(v, u)$ and v would be in S .



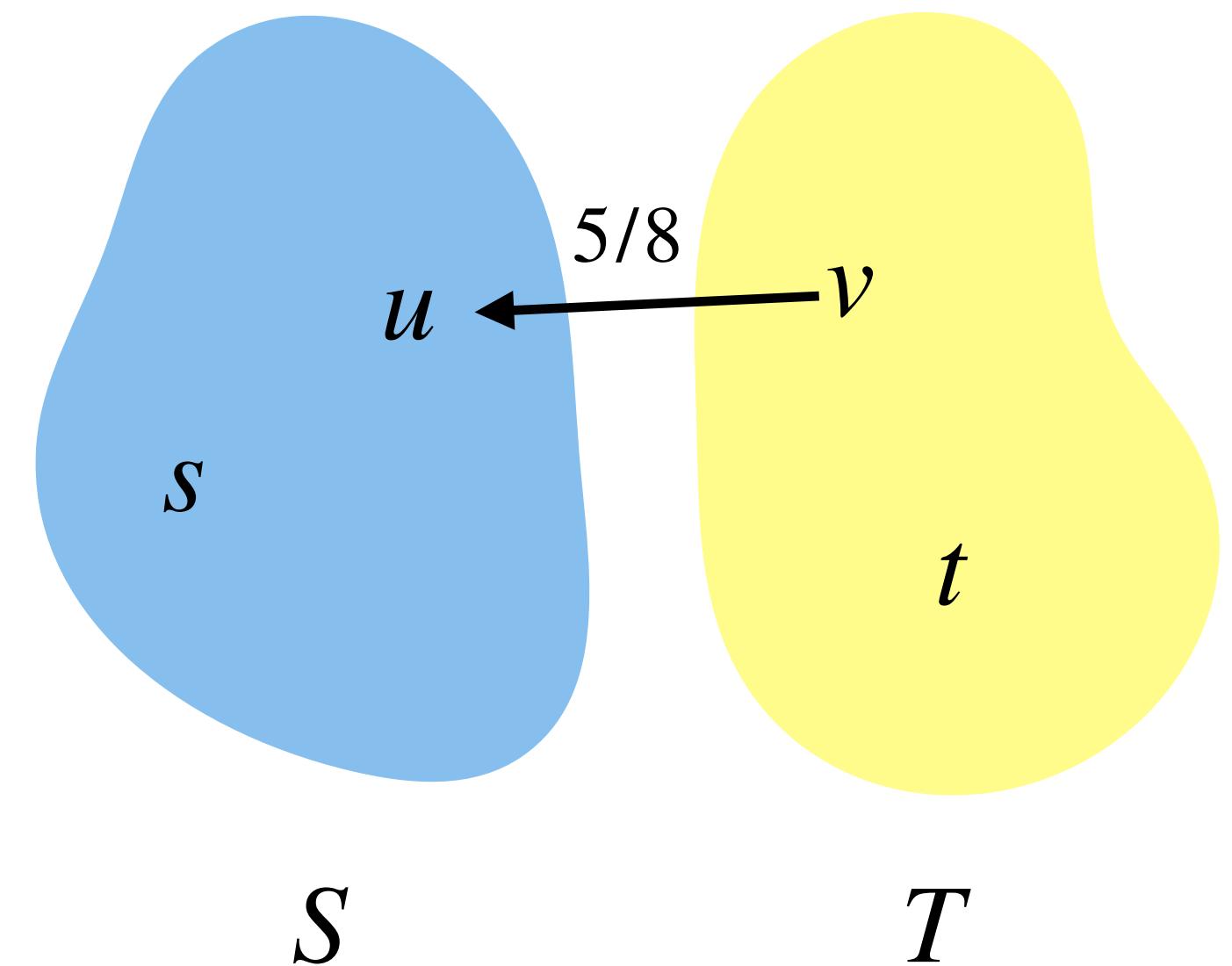
Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$\begin{aligned} f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u, v) - 0 \end{aligned}$$



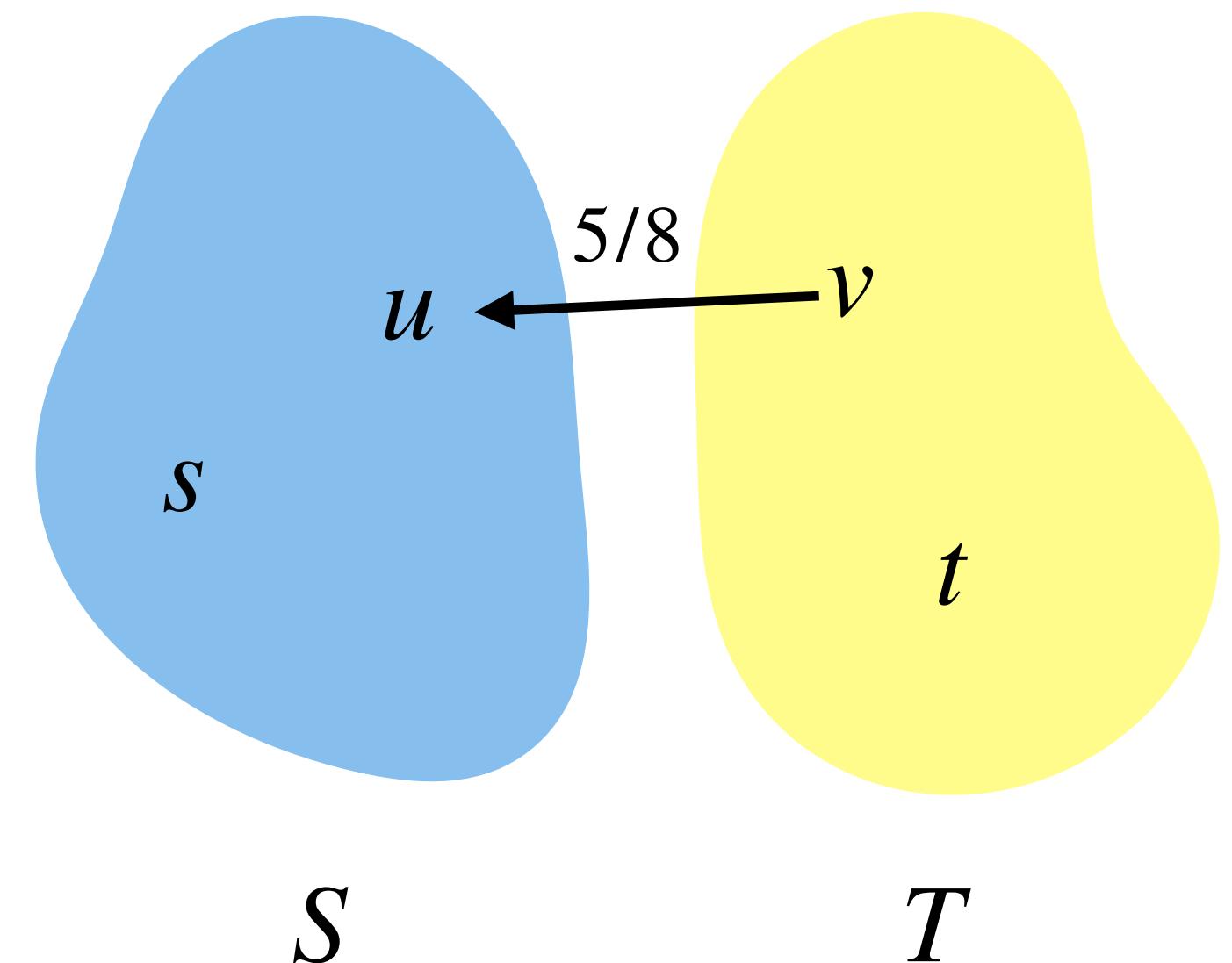
Max-Flow Min-Cut Theorem

Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$\begin{aligned} f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u, v) - 0 \\ &= c(S, T) \end{aligned}$$



Max-Flow Min-Cut Theorem

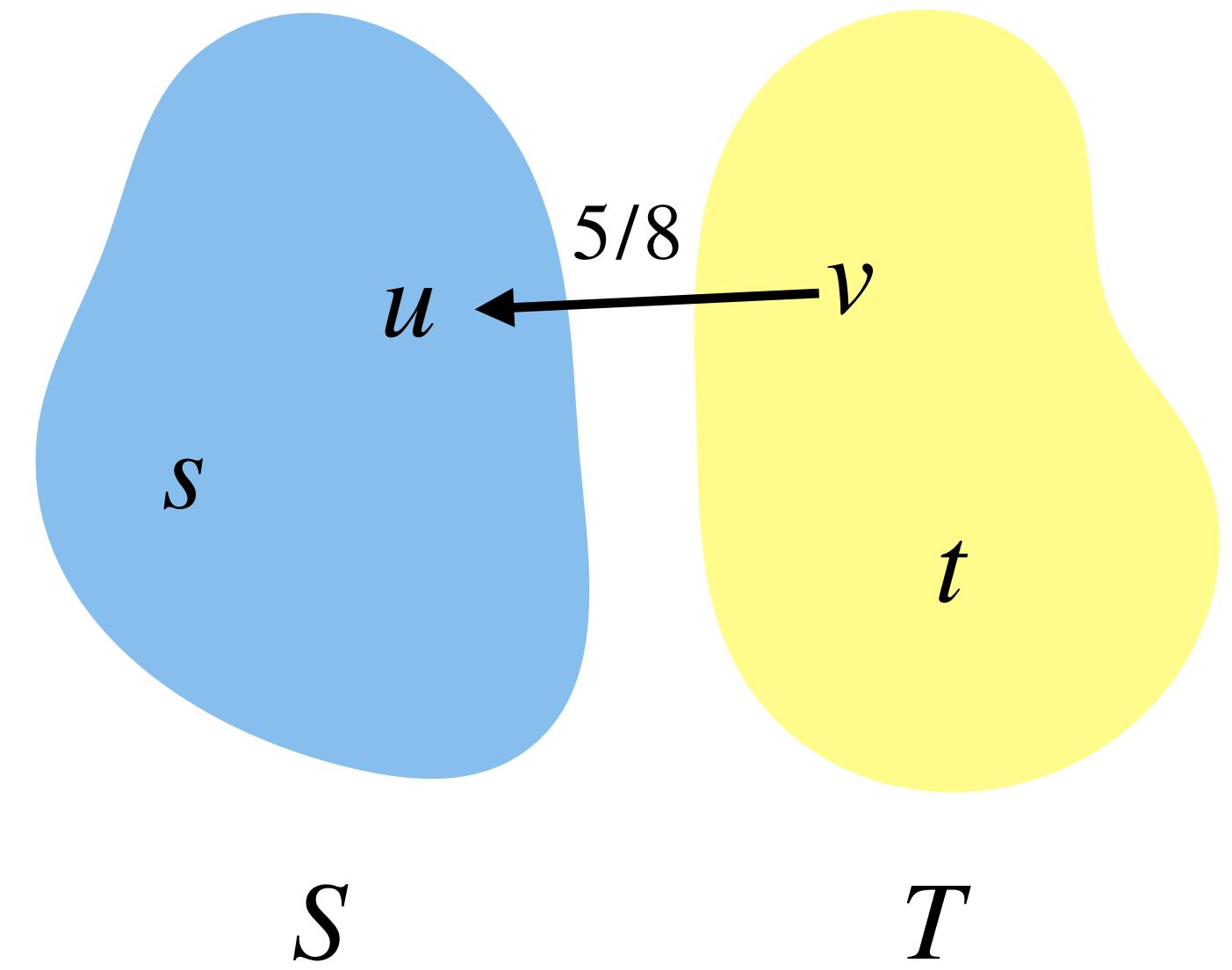
Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$\begin{aligned} f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u, v) - 0 \\ &= c(S, T) \end{aligned}$$

We already know $|f| = f(S, T)$.



Max-Flow Min-Cut Theorem

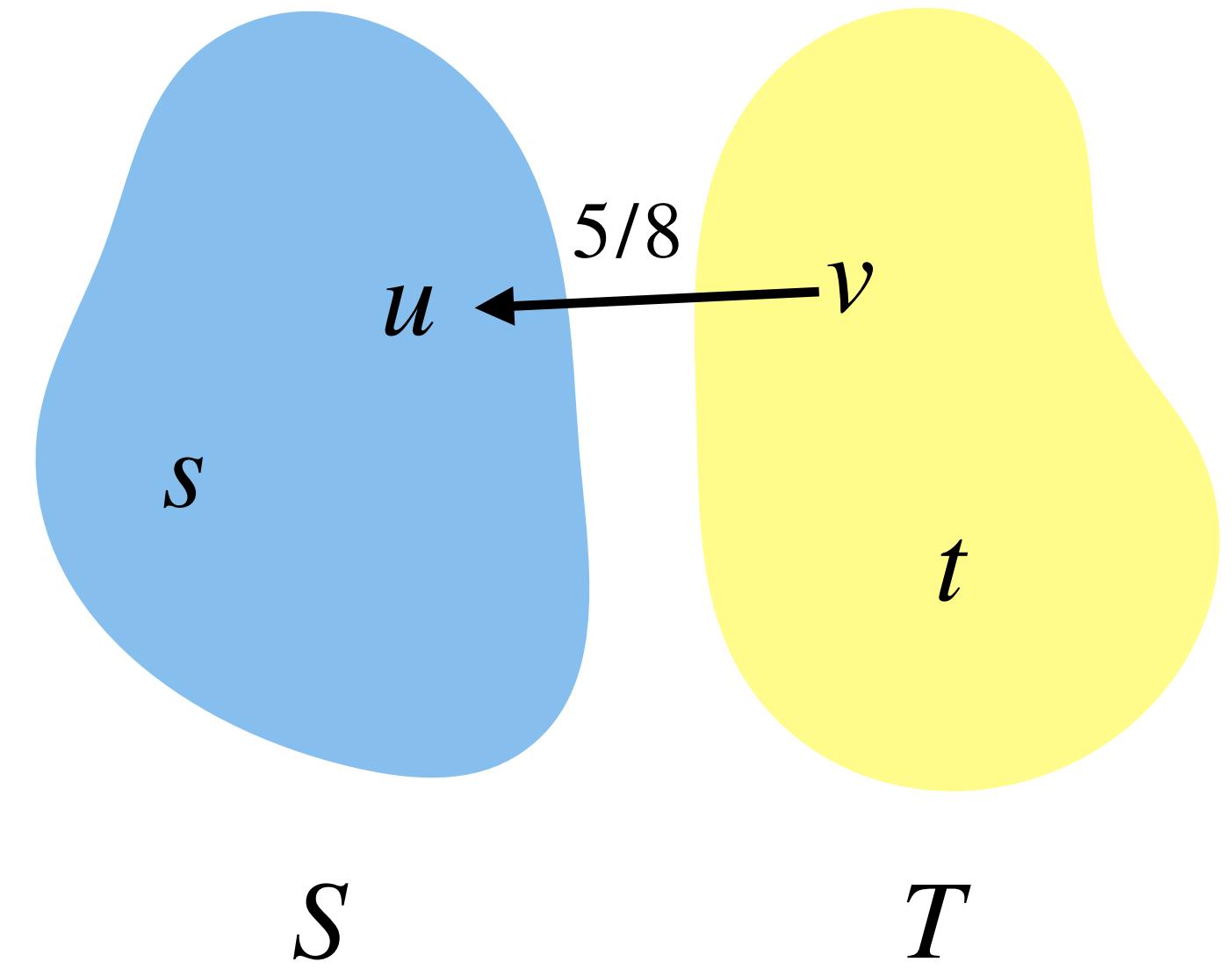
Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$\begin{aligned} f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u, v) - 0 \\ &= c(S, T) \end{aligned}$$

We already know $|f| = f(S, T)$. Hence, $|f| = c(S, T)$.



Max-Flow Min-Cut Theorem

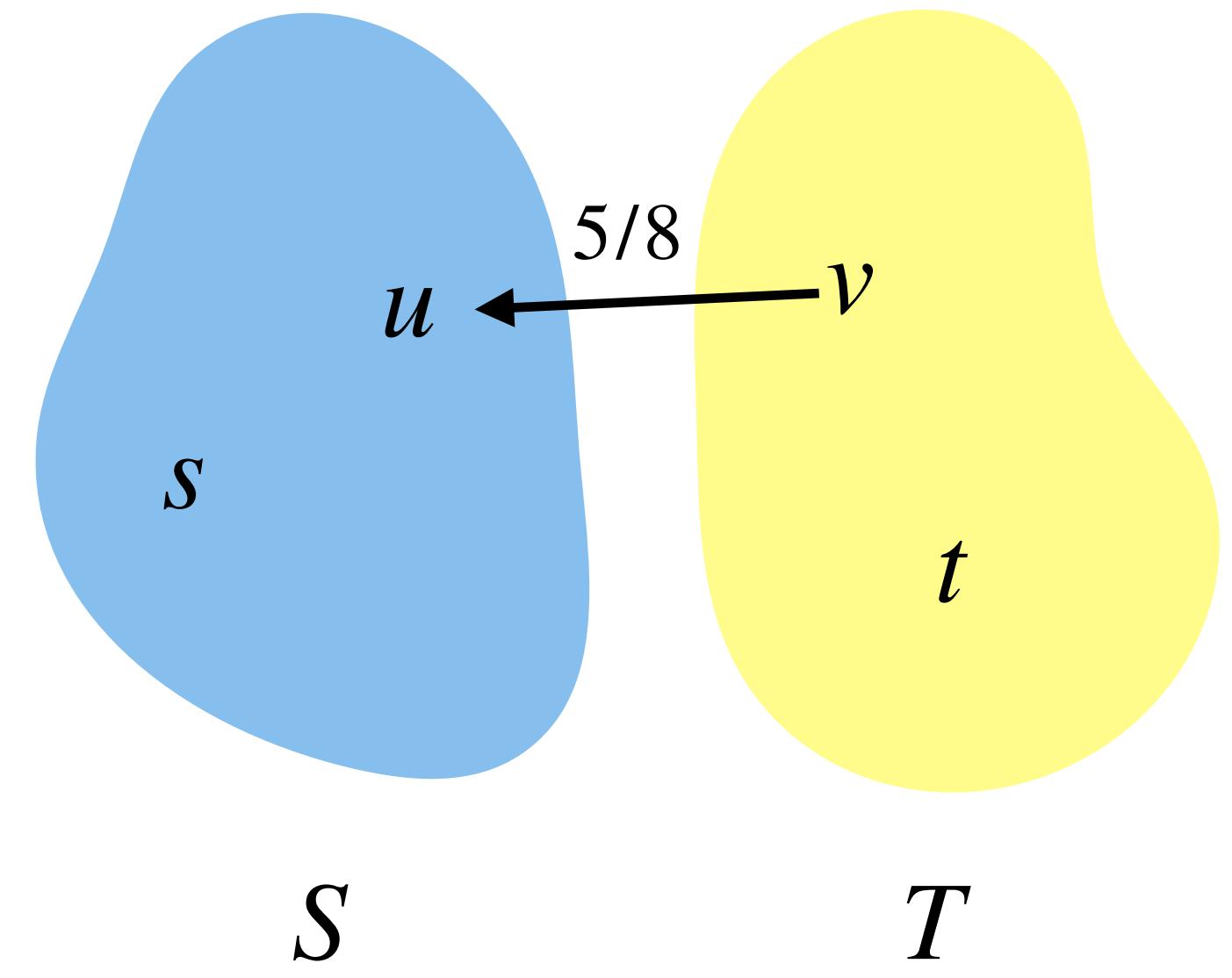
Lemma: If residual network G_f contains **no augmenting path**, then $|f| = c(S, T)$ for some cut (S, T) of G .

Proof: Suppose G_f has no augmenting $s \rightsquigarrow t$ path. We define a cut (S, T) in the following way:

Let $S = \{v \in V \mid \text{there exists a path from } s \text{ to } v \text{ in } G_f\}$ and $T = V \setminus S$.

$$\begin{aligned} f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u, v) - 0 \\ &= c(S, T) \end{aligned}$$

We already know $|f| = f(S, T)$. Hence, $|f| = c(S, T)$.



Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

Lemma: If $|f| = c(S, T)$ for some cut (S, T) of G , then f is a **maximum flow** in G .

Max-Flow Min-Cut Theorem

Lemma: If $|f| = c(S, T)$ for some cut (S, T) of G , then f is a **maximum flow** in G .

Proof:

Max-Flow Min-Cut Theorem

Lemma: If $|f| = c(S, T)$ for some cut (S, T) of G , then f is a **maximum flow** in G .

Proof: Suppose $|f| = c(S, T)$ for some cut (S, T) .

Max-Flow Min-Cut Theorem

Lemma: If $|f| = c(S, T)$ for some cut (S, T) of G , then f is a **maximum flow** in G .

Proof: Suppose $|f| = c(S, T)$ for some cut (S, T) .

There cannot be any other flow f' such that $|f'| > c(S, T)$.

Max-Flow Min-Cut Theorem

Lemma: If $|f| = c(S, T)$ for some cut (S, T) of G , then f is a **maximum flow** in G .

Proof: Suppose $|f| = c(S, T)$ for some cut (S, T) .

There cannot be any other flow f' such that $|f'| > c(S, T)$.

Value of any flow \leq Capacity of any cut

Max-Flow Min-Cut Theorem

Lemma: If $|f| = c(S, T)$ for some cut (S, T) of G , then f is a **maximum flow** in G .

Proof: Suppose $|f| = c(S, T)$ for some cut (S, T) .

There cannot be any other flow f' such that $|f'| > c(S, T)$.

Hence, f is a **maximum flow**.

Value of any flow \leq Capacity of any cut

Max-Flow Min-Cut Theorem

Lemma: If $|f| = c(S, T)$ for some cut (S, T) of G , then f is a **maximum flow** in G .

Proof: Suppose $|f| = c(S, T)$ for some cut (S, T) .

There cannot be any other flow f' such that $|f'| > c(S, T)$.

Hence, f is a **maximum flow**.

Value of any flow \leq Capacity of any cut

