
Lecture 19

Max-Flow Min-Cut Theorem

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos



Ford-Fulkerson Method: Correctness



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t and let  be any cut of (S, T)

.G



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t and let  be any cut of (S, T)

.G Then, the net flow across  is  .(S, T) f(S, T) = | f |



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)

Flow out of source minus flow in to source



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))

Flow out of source minus flow in to source



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))

Flow out of source minus flow in to source  due to flow conservation0



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))

Sum of “flow out - flow in” for every node in S



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))

Sum of “flow out - flow in” for every node in S



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))

Sum of “flow out - flow in” for every node in S

∑
u∈S

∑
v∈V

f(u, v) − ∑
u∈S

∑
v∈V

f(v, u)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

u∈S
∑
v∈V

f(u, v) − ∑
u∈S

∑
v∈V

f(v, u)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

v∈V
∑
u∈S

f(u, v) − ∑
v∈V

∑
u∈S

f(v, u)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

v∈V
∑
u∈S

f(u, v) − ∑
v∈V

∑
u∈S

f(v, u)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

v∈V
∑
u∈S

f(u, v) − ∑
v∈V

∑
u∈S

f(v, u)

    = ∑
v∈S

∑
u∈S

f(u, v) + ∑
v∈T

∑
u∈S

f(u, v)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

v∈V
∑
u∈S

f(u, v) − ∑
v∈V

∑
u∈S

f(v, u)

    = ∑
v∈S

∑
u∈S

f(u, v) + ∑
v∈T

∑
u∈S

f(u, v)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

v∈V
∑
u∈S

f(u, v) − ∑
v∈V

∑
u∈S

f(v, u)

    = ∑
v∈S

∑
u∈S

f(u, v) + ∑
v∈T

∑
u∈S

f(u, v)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

v∈V
∑
u∈S

f(u, v) − ∑
v∈V

∑
u∈S

f(v, u)

    = ∑
v∈S

∑
u∈S

f(u, v) + ∑
v∈T

∑
u∈S

f(u, v)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

v∈V
∑
u∈S

f(u, v) − ∑
v∈V

∑
u∈S

f(v, u)

    = ∑
v∈S

∑
u∈S

f(u, v) + ∑
v∈T

∑
u∈S

f(u, v)  − ∑
v∈S

∑
u∈S

f(v, u) − ∑
v∈T

∑
u∈S

f(v, u)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

v∈V
∑
u∈S

f(u, v) − ∑
v∈V

∑
u∈S

f(v, u)

    = ∑
v∈S

∑
u∈S

f(u, v) + ∑
v∈T

∑
u∈S

f(u, v)  − ∑
v∈S

∑
u∈S

f(v, u) − ∑
v∈T

∑
u∈S

f(v, u)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

v∈V
∑
u∈S

f(u, v) − ∑
v∈V

∑
u∈S

f(v, u)

    = ∑
v∈S

∑
u∈S

f(u, v) + ∑
v∈T

∑
u∈S

f(u, v)  − ∑
v∈S

∑
u∈S

f(v, u) − ∑
v∈T

∑
u∈S

f(v, u)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

v∈V
∑
u∈S

f(u, v) − ∑
v∈V

∑
u∈S

f(v, u)

    = ∑
v∈S

∑
u∈S

f(u, v) + ∑
v∈T

∑
u∈S

f(u, v)  − ∑
v∈S

∑
u∈S

f(v, u) − ∑
v∈T

∑
u∈S

f(v, u)

  = f(S, T)



Ford-Fulkerson Method: Correctness
Lemma: Let    be a flow in a flow network  with source  and sink ,f G s t

Proof:

and let  be any cut of (S, T)
.G Then, the net flow across  is  .(S, T) f(S, T) = | f |

    | f | = ∑
v∈V

f(s, v) − ∑
v∈V

f(v, s)   + ∑
u∈S−{s} (∑

v∈V

f(u, v) − ∑
v∈V

f(v, u))
  = ∑

v∈V
∑
u∈S

f(u, v) − ∑
v∈V

∑
u∈S

f(v, u)

    = ∑
v∈S

∑
u∈S

f(u, v) + ∑
v∈T

∑
u∈S

f(u, v)  − ∑
v∈S

∑
u∈S

f(v, u) − ∑
v∈T

∑
u∈S

f(v, u)

  = f(S, T)
◼



Ford-Fulkerson Method: Correctness



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Examples:



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T
c(S, T) = 26



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T
c(S, T) = 26

Is a flow of value  possible?27



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T
c(S, T) = 23



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T
c(S, T) = 23

Is a flow of value  possible?24



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Examples:

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20
S

T
c(S, T) = 23

Capacity of minimum cut bounds the value of any flow



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

A minimum cut is a cut whose capacity is minimum over all cuts of the network.



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof:



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof: Let  be any cut and    be any flow of .(S, T) f G



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof: Let  be any cut and    be any flow of .(S, T) f G

Then,



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof: Let  be any cut and    be any flow of .(S, T) f G

Then,

| f | = f(S, T)



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof: Let  be any cut and    be any flow of .(S, T) f G

Then,

| f | = f(S, T)

We just proved this



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof: Let  be any cut and    be any flow of .(S, T) f G

Then,

| f | = f(S, T)



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof: Let  be any cut and    be any flow of .(S, T) f G

Then,

| f | = f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u)



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof: Let  be any cut and    be any flow of .(S, T) f G

Then,

| f | = f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u) ≤ ∑
u∈S

∑
v∈T

f(u, v)



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof: Let  be any cut and    be any flow of .(S, T) f G

Then,

| f | = f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u) ≤ ∑
u∈S

∑
v∈T

f(u, v) ≤ ∑
u∈S

∑
v∈T

c(u, v)



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof: Let  be any cut and    be any flow of .(S, T) f G

Then,

| f | = f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u) ≤ ∑
u∈S

∑
v∈T

f(u, v) ≤ ∑
u∈S

∑
v∈T

c(u, v) = c(S, T)



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof: Let  be any cut and    be any flow of .(S, T) f G

Then,

| f | = f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u) ≤ ∑
u∈S

∑
v∈T

f(u, v) ≤ ∑
u∈S

∑
v∈T

c(u, v) = c(S, T)
◼



Ford-Fulkerson Method: Correctness
Defn: The capacity of a cut  is defined as(S, T)

c(S, T) = ∑
u∈S

∑
v∈T

c(u, v)

Lemma: The value of any flow    in a flow network     capacity of any cut of . f G ≤ G

A minimum cut is a cut whose capacity is minimum over all cuts of the network.

Proof: Let  be any cut and    be any flow of .(S, T) f G

Then,

| f | = f(S, T) = ∑
u∈S

∑
v∈T

f(u, v) − ∑
u∈S

∑
v∈T

f(v, u) ≤ ∑
u∈S

∑
v∈T

f(u, v) ≤ ∑
u∈S

∑
v∈T

c(u, v) = c(S, T)
◼

Corollary: The value of max flow in a flow network     capacity of minimum cut of . G ≤ G
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    is a maximum flow in .1) f G
  The residual network    contains no augmenting path.2) Gf

   for some cut  of .3) | f | = c(S, T) (S, T) G

then the following conditions are equivalent: 

Proof: We will prove in the following way:

         1) ⟹ 2) ⟹ 3) ⟹ 1)

This is enough to prove Ford-Fulkerson method correct
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Such a cut must exist due to above theorem.
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